SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Scanning Electron Microscopy and X-Ray Microanalysis

Scanning Electron Microscopy and X-Ray Microanalysis

Scanning Electron Microscopy and X-Ray Microanalysis

Joseph Goldstein, Patrick Echlin, David C. Joy, Eric Lifshin, Charles E. Lyman, J. R. Michael, Dale E. Newbury og Linda Sawyer
(2007)
Sprog: Engelsk
Springer
1.163,00 kr.
Print on demand. Leveringstid vil være ca 2-3 uger.

Detaljer om varen

  • Hardback: 586 sider
  • Udgiver: Springer (April 2007)
  • Forfattere: Joseph Goldstein, Patrick Echlin, David C. Joy, Eric Lifshin, Charles E. Lyman, J. R. Michael, Dale E. Newbury og Linda Sawyer
  • ISBN: 9780306472923

This text provides students as well as practitioners with a comprehensive introduction to the field of scanning electron microscopy (SEM) and X-ray microanalysis. The authors emphasize the practical aspects of the techniques described. Topics discussed include user-controlled functions of scanning electron microscopes and x-ray spectrometers and the use of x-rays for qualitative and quantitative analysis. Separate chapters cover SEM sample preparation methods for hard materials, polymers, and biological specimens. In addition techniques for the elimination of charging in non-conducting specimens are detailed.

1. Introduction.-
1.1. Imaging Capabilities.-
1.2. Structure Analysis.-
1.3. Elemental Analysis.-
1.4. Summary and Outline of This Book.- Appendix A. Overview of Scanning Electron Microscopy.- Appendix B. Overview of Electron Probe X-Ray Microanalysis.- References.-
2. The SEM and Its Modes of Operation.-
2.1. How the SEM Works.-
2.1.1. Functions of the SEM Subsystems.-
2.1.1.1. Electron Gun and Lenses Produce a Small Electron Beam.-
2.1.1.2. Deflection System Controls Magnification.-
2.1.1.3. Electron Detector Collects the Signal.-
2.1.1.4. Camera or Computer Records the Image.-
2.1.1.5. Operator Controls.-
2.1.2. SEM Imaging Modes.-
2.1.2.1. Resolution Mode.-
2.1.2.2. High-Current Mode.-
2.1.2.3. Depth-of-Focus Mode.-
2.1.2.4. Low-Voltage Mode.-
2.1.3. Why Learn about Electron Optics'.-
2.2. Electron Guns.-
2.2.1. Tungsten Hairpin Electron Guns.-
2.2.1.1. Filament.-
2.2.1.2. Grid Cap.-
2.2.1.3. Anode.-
2.2.1.4. Emission Current and Beam Current.-
2.2.1.5. Operator Control of the Electron Gun.-
2.2.2. Electron Gun Characteristics.-
2.2.2.1. Electron Emission Current.-
2.2.2.2. Brightness.-
2.2.2.3. Lifetime.-
2.2.2.4. Source Size, Energy Spread, Beam Stability.-
2.2.2.5. Improved Electron Gun Characteristics.-
2.2.3. Lanthanum Hexaboride (LaB6) Electron Guns.-
2.2.3.1. Introduction.-
2.2.3.2. Operation of the LaB6 Source.-
2.2.4. Field Emission Electron Guns.-
2.3. Electron Lenses.-
2.3.1. Making the Beam Smaller.-
2.3.1.1. Electron Focusing.-
2.3.1.2. Demagnification of the Beam.-
2.3.2. Lenses in SEMs.-
2.3.2.1. Condenser Lenses.-
2.3.2.2. Objective Lenses.-
2.3.2.3. Real and Virtual Objective Apertures.-
2.3.3. Operator Control of SEM Lenses.-
2.3.3.1. Effect of Aperture Size.-
2.3.3.2. Effect of Working Distance.-
2.3.3.3. Effect of Condenser Lens Strength.-
2.3.4. Gaussian Probe Diameter.-
2.3.5. Lens Aberrations.-
2.3.5.1. Spherical Aberration.-
2.3.5.2. Aperture Diffraction.-
2.3.5.3. Chromatic Aberration.-
2.3.5.4. Astigmatism.-
2.3.5.5. Aberrations in the Objective Lens.-
2.4. Electron Probe Diameter versus Electron Probe Current.-
2.4.1. Calculation of dmin and imax.-
2.4.1.1. Minimum Probe Size.-
2.4.1.2. Minimum Probe Size at 10-30 kV.-
2.4.1.3. Maximum Probe Current at 10-30 kV.-
2.4.1.4. Low-Voltage Operation.-
2.4.1.5. Graphical Summary.-
2.4.2. Performance in the SEM Modes.-
2.4.2.1. Resolution Mode.-
2.4.2.2. High-Current Mode.-
2.4.2.3. Depth-of-Focus Mode.-
2.4.2.4. Low-Voltage SEM.-
2.4.2.5. Environmental Barriers to High-Resolution Imaging.- References.-
3. Electron Beam-Specimen Interactions.-
3.1. The Story So Far.-
3.2. The Beam Enters the Specimen.-
3.3. The Interaction Volume.-
3.3.1. Visualizing the Interaction Volume.-
3.3.2. Simulating the Interaction Volume.-
3.3.3. Influence of Beam and Specimen Parameters on the Interaction Volume.-
3.3.3.1. Influence of Beam Energy on the Interaction Volume.-
3.3.3.2. Influence of Atomic Number on the Interaction Volume.-
3.3.3.3. Influence of Specimen Surface Tilt on the Interaction Volume.-
3.3.4. Electron Range: A Simple Measure of the Interaction Volume.-
3.3.4.1. Introduction.-
3.3.4.2. The Electron Range at Low Beam Energy.-
3.4. Imaging Signals from the Interaction Volume.-
3.4.1. Backscattered Electrons.-
3.4.1.1. Atomic Number Dependence of BSE.-
3.4.1.2. Beam Energy Dependence of BSE.-
3.4.1.3. Tilt Dependence of BSE.-
3.4.1.4. Angular Distribution of BSE.-
3.4.1.5. Energy Distribution of BSE.-
3.4.1.6. Lateral Spatial Distribution of BSE.-
3.4.1.7. Sampling Depth of BSE.-
3.4.2. Secondary Electrons.-
3.4.2.1. Definition and Origin of SE.-
3.4.2.2. SE Yield with Primary Beam Energy.-
3.4.2.3. SE Energy Distribution.-
3.4.2.4. Range and Escape Depth of SE.-
3.4.2.5. Relative Contributions of SE1 and SE2.-
3.4.2.6. Specimen Composition Dependence of SE.-
3.4.2.7. Specimen Tilt Dependence of SE.-
3.4.2.8. Angular Distribution of SE.- References.-
4. Image Formation and Interpretation.-
4.1. The Story So Far.-
4.2. The Basic SEM Imaging Process.-
4.2.1. Scanning Action.-
4.2.2. Image Construction (Mapping).-
4.2.2.1. Line Scans.-
4.2.2.2. Image (Area) Scanning.-
4.2.2.3. Digital Imaging: Collection and Display.-
4.2.3. Magnification.-
4.2.4. Picture Element (Pixel) Size.-
4.2.5. Low-Magnification Operation.-
4.2.6. Depth of Field (Focus).-
4.2.7. Image Distortion.-
4.2.7.1. Projection Distortion: Gnomonic Projection.-
4.2.7.2. Projection Distortion: Image Foreshortening.-
4.2.7.3. Scan Distortion: Pathological Defects.-
4.2.7.4. Moiré Effects.-
4.3. Detectors.-
4.3.1. Introduction.-
4.3.2. Electron Detectors.-
4.3.2.1. Everhart-Thornley Detector.-
4.3.2.2. "Through-the-Lens" (TTL) Detector.-
4.3.2.3. Dedicated Backscattered Electron Detectors.-
4.4. The Roles of the Specimen and Detector in Contrast Formation.-
4.4.1. Contrast.-
4.4.2. Compositional (Atomic Number) Contrast.-
4.4.2.1. Introduction.-
4.4.2.2. Compositional Contrast with Backscattered Electrons.-
4.4.3. Topographic Contrast.-
4.4.3.1. Origins of Topographic Contrast.-
4.4.3.2. Topographic Contrast with the Everhart-Thornley Detector.-
4.4.3.3. Light-Optical Analogy.-
4.4.3.4. Interpreting Topographic Contrast with Other Detectors.-
4.5. Image Quality.-
4.6. Image Processing for the Display of Contrast Information.-
4.6.1. The Signal Chain.-
4.6.2. The Visibility Problem.-
4.6.3. Analog and Digital Image Processing.-
4.6.4. Basic Digital Image Processing.-
4.6.4.1. Digital Image Enhancement.-
4.6.4.2. Digital Image Measurements.- References.-
5. Special Topics in Scanning Electron Microscopy.-
5.1. High-Resolution Imaging.-
5.1.1. The Resolution Problem.-
5.1.2. Achieving High Resolution at High Beam Energy.-
5.1.3. High-Resolution Imaging at Low Voltage.-
5.2. STEM-in-SEM: High Resolution for the Special Case of Thin Specimens.-
5.3. Surface Imaging at Low Voltage.-
5.4. Making Dimensional Measurements in the SEM.-
5.5. Recovering the Third Dimension: Stereomicroscopy.-
5.5.1. Qualitative Stereo Imaging and Presentation.-
5.5.2. Quantitative Stereo Microscopy.-
5.6. Variable-Pressure and Environmental SEM.-
5.6.1. Current Instruments.-
5.6.2. Gas in the Specimen Chamber.-
5.6.2.1. Units of Gas Pressure.-
5.6.2.2. The Vacuum System.-
5.6.3. Electron Interactions with Gases.-
5.6.4. The Effect of the Gas on Charging.-
5.6.5. Imaging in the ESEM and the VPSEM.-
5.6.6. X-Ray Microanalysis in the Presence of a Gas.-
5.7. Special Contrast Mechanisms.-
5.7.1. Electric Fields.-
5.7.2. Magnetic Fields.-
5.7.2.1. Type 1 Magnetic Contrast.-
5.7.2.2. Type 2 Magnetic Contrast.-
5.7.3. Crystallographic Contrast.-
5.8. Electron Backscatter Patterns.-
5.8.1. Origin of EBSD Patterns.-
5.8.2. Hardware for EBSD.-
5.8.3. Resolution of EBSD.-
5.8.3.1. Lateral Spatial Resolution.-
5.8.3.2. Depth Resolution.-
5.8.4. Applications.-
5.8.4.1. Orientation Mapping.-
5.8.4.2. Phase Identification.- References.-
6. Generation of X-Rays in the SEM Specimen.-
6.1. Continuum X-Ray Production (Bremsstrahlung).-
6.2. Characteristic X-Ray Production.-
6.2.1. Origin.-
6.2.2. Fluorescence Yield.-
6.2.3. Electron Shells.-
6.2.4. Energy-Level Diagram.-
6.2.5. Electron Transitions.-
6.2.6. Critical Ionization Energy.-
6.2.7. Moseley''s Law.-
6.2.8. Families of Characteristic Lines.-
6.2.9. Natural Width of Characteristic X-Ray Lines.-
6.2.10. Weights of Lines.-
6.2.11. Cross Section for Inner Shell Ionization.-
6.2.12. X-Ray Production in Thin Foils.-
6.2.13. X-Ray Production in Thick Targets.-
6.2.14. X-Ray Peak-to-Background Ratio.-
6.3. Depth of X-Ray Production (X-Ray Range).-
6.3.1. Anderson-Hasler X-Ray Range.-
6.3.2. X-Ray Spatial Resolution.-
6.3.3. Sampling Volume and Specimen Homogeneity.-
6.3.4.Depth Distribution of X-Ray Production, ?(?z).-
6.4. X-Ray Absorption.-
6.4.1. Mass Absorption Coefficient for an Element.-
6.4.2. Effect of Absorption Edge on Spectrum.-
6.4.3. Absorption Coefficient for Mixed-Element Absorbers.-
6.5. X-Ray Fluorescence.-
6.5.1. Characteristic Fluorescence.-
6.5.2. Continuum Fluorescence.-
6.5.3. Range of Fluorescence Radiation.- References.-
7. X-Ray Spectral Measurement: EDS and WDS.-
7.1. Introduction.-
7.2. Energy-Dispersive X-Ray Spectrometer.-
7.2.1. Operating Principles.-
7.2.2. The Detection Process.-
7.2.3. Charge-to-Voltage Conversion.-
7.2.4. Pulse-Shaping Linear Amplifier and Pileup Rejection Circuitry.-
7.2.5. The Computer X-Ray Analyzer.-
7.2.6. Digital Pulse Processing.-
7.2.7. Spectral Modification Resulting from the Detection Process.-
7.2.7.1. Peak Broadening.-
7.2.7.2. Peak Distortion.-
7.2.7.3. Silicon X-Ray Escape Peaks.-
7.2.7.4. Absorption Edges.-
7.2.7.5. Silicon Internal Fluorescence Peak.-
7.2.8. Artifacts from the Detector Environment.-
7.2.9. Summary of EDS Operation and Artifacts.-
7.3. Wavelength-Dispersive Spectrometer.-
7.3.1. Introduction.-
7.3.2. Basic Description.-
7.3.3. Diffraction Conditions.-
7.3.4. Diffracting Crystals.-
7.3.5. The X-Ray Proportional Counter.-
7.3.6. Detector Electronics.-
7.4. Comparison of Wavelength-Dispersive Spectrometers with Conventional Energy-Dispersive Spectrometers.-
7.4.1. Geometric Collection Efficiency.-
7.4.2. Quantum Efficiency.-
7.4.3. Resolution.-
7.4.4. Spectral Acceptance Range.-
7.4.5. Maximum Count Rate.-
7.4.6. Minimum Probe Size.-
7.4.7. Speed of Analysis.-
7.4.8. Spectral Artifacts.-
7.5. Emerging Detector Technologies.-
7.5.1. X-Ray Microcalorimetery.-
7.5.2. Silicon Drift Detectors.-
7.5.3. Parallel Optic Diffraction-Based Spectrometers.- References.-
8. Qualitative X-Ray Analysis.-
8.1. Introduction.-
8.2. EDS Qualitative Analysis.-
8.2.1. X-Ray Peaks.-
8.2.2. Guidelines for EDS Qualitative Analysis.-
8.2.2.1. General Guidelines for EDS Qualitative Analysis.-
8.2.2.2. Specific Guidelines for EDS Qualitative Analysis.-
8.2.3. Examples of Manual EDS Qualitative Analysis.-
8.2.4. Pathological Overlaps in EDS Qualitative Analysis.-
8.2.5. Advanced Qualitative Analysis: Peak Stripping.-
8.2.6. Automatic Qualitative EDS Analysis.-
8.3. WDS Qualitative Analysis.-
8.3.1. Wavelength-Dispersive Spectro
De oplyste priser er inkl. moms

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.