SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: A Guide to Feynman Diagrams in the Many-Body Problem

A Guide to Feynman Diagrams in the Many-Body Problem
Søgbar e-bog

A Guide to Feynman Diagrams in the Many-Body Problem Vital Source e-bog

Richard D. Mattuck
(2012)
Dover Publications
227,00 kr.
Leveres umiddelbart efter køb
A Guide to Feynman Diagrams in the Many-Body Problem

A Guide to Feynman Diagrams in the Many-Body Problem

Richard D. Mattuck
(1992)
Sprog: Engelsk
Dover Publications, Incorporated
346,00 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 10 hverdage

Detaljer om varen

  • Vital Source searchable e-book (Reflowable pages): 429 sider
  • Udgiver: Dover Publications (August 2012)
  • ISBN: 9780486131641
"A great delight to read." — Physics Today Among the most fertile areas of modern physics, many-body theory has produced a wealth of fundamental results in all areas of the discipline. Unfortunately the subject is notoriously difficult and, until the publication of this book, most treatments of the topic were inaccessible to the average experimenter or non-specialist theoretician. The present work, by contrast, is well within the grasp of the nonexpert. It is intended primarily as a "self-study" book that introduces one aspect of many-body theory, i.e. the method of Feynman diagrams. The book also lends itself to use as a reference in courses on solid state and nuclear physics which make some use of the many-body techniques. And, finally, it can be used as a supplementary reference in a many-body course. Chapters 1 through 6 provide an introduction to the major concepts of the field, among them Feynman diagrams, quasi-particles and vacuum amplitudes. Chapters 7 through 16 give basic coverage to topics ranging from Dyson's equation and the ladder approximation to Fermi systems at finite temperature and superconductivity. Appendixes summarize the Dirac formalism and include a rigorous derivation of the rules for diagrams. Problems are provided at the end of each chapter and solutions are given at the back of the book. For this second edition, Dr. Mattuck, formerly of the H. C. Orsted Institute and the University of Copenhagen, added to many chapters a new section showing in mathematical detail how typical many-body calculations with Feynman diagrams are carried out. In addition, new exercises were included, some of which gave the reader the opportunity to carry out simpler many-body calculations himself.  new chapter on the quantum field theory of phase transitions rounds out this unusually clear, helpful and informative guide to the physics of the many-body problem.
Licens varighed:
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: -1 sider kan printes ad gangen
Copy: højest -1 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • Paperback: 429 sider
  • Udgiver: Dover Publications, Incorporated (November 1992)
  • ISBN: 9780486670478
"A great delight to read." -- Physics Today
Among the most fertile areas of modern physics, many-body theory has produced a wealth of fundamental results in all areas of the discipline. Unfortunately the subject is notoriously difficult and, until the publication of this book, most treatments of the topic were inaccessible to the average experimenter or non-specialist theoretician.
The present work, by contrast, is well within the grasp of the nonexpert. It is intended primarily as a "self-study" book that introduces one aspect of many-body theory, i.e. the method of Feynman diagrams. The book also lends itself to use as a reference in courses on solid state and nuclear physics which make some use of the many-body techniques. And, finally, it can be used as a supplementary reference in a many-body course.
Chapters 1 through 6 provide an introduction to the major concepts of the field, among them Feynman diagrams, quasi-particles and vacuum amplitudes. Chapters 7 through 16 give basic coverage to topics ranging from Dyson's equation and the ladder approximation to Fermi systems at finite temperature and superconductivity. Appendixes summarize the Dirac formalism and include a rigorous derivation of the rules for diagrams. Problems are provided at the end of each chapter and solutions are given at the back of the book.
For this second edition, Dr. Mattuck, formerly of the H. C. Orsted Institute and the University of Copenhagen, added to many chapters a new section showing in mathematical detail how typical many-body calculations with Feynman diagrams are carried out. In addition, new exercises were included, some of which gave the reader the opportunity to carry out simpler many-body calculations himself. new chapter on the quantum field theory of phase transitions rounds out this unusually clear, helpful and informative guide to the physics of the many-body problem.
Preface to second editionPreface to first edition.
0. The Many-Body Problem- for Everybody
0.0 What the many-body problem is about
0.1 Simple example of non-interacting fictitious bodies
0.2 Quasi particles and quasi horses
0.3 Collective excitations
1. "Feynman Diagrams, or how to Solve the Many-Body Problem by means of Pictures "
1.1 Propagators-the heroes of the many-body problem
1.2 Calculating propagators by Feynman diagrams: the drunken man propagator
1.3 Propagator for single electron moving through a metal
1.4 Single-particle propagator for system of many interacting particles
1.5 The two-particle propagator and the particle-hole propagator
1.6 The no-particle propagator (''vacuum amplitude'')
2. Classical Quasi Particles and the Pinball Propagator
2.1 Physical picture of quasi particle
2.2 The classical quasi particle propagator
2.3 Calculation of the propagator by means of diagrams
3. Quantum Quasi Particles and the Quantum Pinball Propagator
3.1 The quantum mechanical propagator
3.2 The quantum pinball game
3.3 Disappearance of disagreeable divergences
3.4 Where the diagram expansion of the propagator really comes from
3.5 Energy and lifetime of an electron in an impure metal4. Quasi Particles in Fermi Systems
4.1 Propagator method in many-body systems
4.2 Non-interacting Fermi system in external potential; particle-hole picture
4.3 A primer of occupation number formalism (second quantization)
4.4 Propagator for non-interacting Fermi system in external perturbing potential
4.5 Interacting Fermi system
4.6 The ''quasi-physical'' nature of Feynman diagrams
4.7 Hartree and Hartree-Fock quasi particles
4.8 Hartree-Fock quasi particles in nuclear matter
4.9 "Quasi particles in the electron gas, and the random phase approximation "5. Ground State Energy and the Vacuum Amplitude or ''No-particle Propagator''
5.1 Meaning of the vacuum amplitude.
5.2 The pinball machine vacuum amplitude
5.3 Quantum vacuum amplitude for one-particle system
5.4 Linked cluster theorem for one-particle system
5.5 Finding the ground state energy in one-particle system.
5.6 The many-body case
6. Bird''s-Eye View of Diagram Methods in the Many-Body Problem
7. Occupation Number Formalism (Second Quantization)
7.1 The advantages of occupation number formalism
7.2 Many-body wave function in occupation number formalism
7.3 Operators in occupation number formalism
7.4 Hamiltonian and Schrödinger equation in occupation number formalism
7.5 Particle-hole formalism
7.6 Occupation number formalism based on single-particle position eigenstates
7.7 Bosons
8. More about Quasi Particles
8.1 Introduction
8.2 A soluble fermion system: the pure Hartree model
8.3 Crude calculation of quasi particle lifetime
8.4 General form of quasi particle propagator9. The Single-Particle Propagator Re-visited
9.1 Second quantization and the propagator
9.2 Mathematical expression for the single-particle Green''s function propagator.
9.3 Spectral density function
9.4 Derivation of the propagator expansion in the many-body case
9.5 Topology of diagrams
9.6 Diagram rules for single-particle propagator
9.7 "Modified propagator formalism using chemical potential, µ "
9.8 Beyond Hartree-Fock: the single pair-bubble approximation10. "Dyson''s Equation, Renormalization, RPA and Ladder Approximations "
10.1 General types of partial sums
10.2 Dyson''s equation
10.3 Quasi particles in low-density Fermi system (ladder approximation)
10.4 Quasi particles in high-density electron gas (random phase approximation)
10.5 The general ''dressed'' or ''effective'' interaction
10.6 The scattering amplitude
10.7 Evaluation of the pair bubble; Friedel oscillations
11. Self-Consistent Renormalization and the Existence of the Fermi Surface
11.1 "Dressed particle and hole lines, or ''clothed skeletons'' "
11.2 Existence of quasi particles when the perturbation expansion is valid
11.3 Existence of the Fermi surface in an interacting system.
11.4 Dressed vertices
12. Ground State Energy of Electron Gas and Nuclear Matter
12.1 Review
12.2 Diagrams for the ground state energy
12.3 Ground state energy of high-density electron gas: theory of Gell-Mann and Brueckner
12.4 Brief view of Brueckner theory of nuclear matter13. Collective Excitations and the Two-Particle Propagator
13.1 Introduction
13.2 The two-particle Green''s function propagator
13.3 Polarization (''density fluctuation'') propagator
13.4 Retarded polarization propagator and linear response
13.5 The collective excitation propagator
13.6 Plasmons and quasi plasmons
13.7 Expressing the two-particle propagator in terms of the scattering amplitude14. Fermi Systems at Finite Temperature
14.1 Generalization of the T = 0 case
14.2 Statistical mechanics in occupation number formalism
14.3 The finite temperature propagator
14.4 The finite temperature vacuum amplitude
14.5 The pair-bubble at finite temperature
15. Diagram Methods in Superconductivity
15.1 Introduction
15.2 Hamiltonian for coupled electron-phonon system.
15.3 Short review of BCS theory
15.4 Breakdown of the perturbation expansion in a superconductor
15.5 A brief look at Nambu formalism
15.6 Treatment of retardation effects by Nambu formalism
15.7 Transition temperature of a superconductor16. Phonons From a Many-Body Viewpoint (Reprint)
17. Quantum Field Theory of Phase Transitions in Fermi Systems
17.1 Introduction
17.2 Qualitative theory of phase transitions
17.3 Anomalous propagators and the breakdown of the perturbation series in the condensed phase.
17.4 The generalized matrix propagator
17.5 Application to ferromagnetic phase in system with d-function interaction.
17.6 I Divergence of the two-particle propagator and scattering amplitude at the transition point
18. Feynman Diagrams in the Kondo Problem
18.1 Introduction
18.2 Second-order (Born) approximation.
18.3 Parquet approximation with bare propagators.
18.4 Self-consistently renormalized s-electrons r
18.5 Strong-coupling approximation with self-consistently renormalized pseudofermions and vertices.
19. The Renormalization Group
19.1 Introduction
19.2 Review of effective interaction in the high-density electron gas
19.3 Renormalization group for interaction propagators in the high-density electron gas.
19.4 Transforming from one transformed quantity to another: the functional equation of the renormaIization group
19.5 Lie equation for the renormalization group
19.6 Solution of the Lie equation Appendices A Finding fictitious particles with the canonical transformation. A. Dirac formalism B. "The time development operator, U(t)
. " C. Finding the ground state energy from the vacuum amplitude. D. "The u(t) operator and its expansion, " E. Expansion of the single-particle propagator and vacuum amplitude F. Evaluating matrix elements by Wick''s theorem. G. Derivation of the graphical expansion for propagator and vacuum H. The spectral density function I. How the id factor is used J. Electron propagator in normal electron-phonon system K. Spin wave functions. L. Sunmary of different kinds of propagators and their spectral representations and analytic properties.
. M. The decoupled equations of motion for the Green''s function expressed as a partial sum of Feyman diagrams N. The reduced graph expansion Answers to Exercises References Index
De oplyste priser er inkl. moms

Andre har også købt:

Rust for Rustaceans - Idiomatic Programming for Experienced Developers
Rust for Rustaceans
Af Jon Gjengset
Pris: 491,00 kr.

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.