SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Ligand Design in Metal Chemistry - Reactivity and Catalysis

Ligand Design in Metal Chemistry: Reactivity and Catalysis, 1. udgave
Søgbar e-bog

Ligand Design in Metal Chemistry: Reactivity and Catalysis Vital Source e-bog

Mark Stradiotto, Rylan J. Lundgren, Stephen L. Buchwald og David Milstein
(2016)
John Wiley & Sons
1.613,00 kr.
Leveres umiddelbart efter køb
Ligand Design in Metal Chemistry - Reactivity and Catalysis

Ligand Design in Metal Chemistry

Reactivity and Catalysis
Stephen L. Buchwald, David Milstein, Mark Stradiotto og Rylan J. Lundgren
(2016)
Sprog: Engelsk
John Wiley & Sons, Limited
1.662,00 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 10 hverdage

Detaljer om varen

  • 1. Udgave
  • Vital Source searchable e-book (Reflowable pages)
  • Udgiver: John Wiley & Sons (September 2016)
  • Forfattere: Mark Stradiotto, Rylan J. Lundgren, Stephen L. Buchwald og David Milstein
  • ISBN: 9781118839812
The design of ancillary ligands used to modify the structural and reactivity properties of metal complexes has evolved into a rapidly expanding sub-discipline in inorganic and organometallic chemistry. Ancillary ligand design has figured directly in the discovery of new bonding motifs and stoichiometric reactivity, as well as in the development of new catalytic protocols that have had widespread positive impact on chemical synthesis on benchtop and industrial scales. Ligand Design in Metal Chemistry presents a collection of cutting-edge contributions from leaders in the field of ligand design, encompassing a broad spectrum of ancillary ligand classes and reactivity applications. Topics covered include: Key concepts in ligand design Redox non-innocent ligands Ligands for selective alkene metathesis Ligands in cross-coupling Ligand design in polymerization Ligand design in modern lanthanide chemistry Cooperative metal-ligand reactivity P,N Ligands for enantioselective hydrogenation Spiro-cyclic ligands in asymmetric catalysis This book will be a valuable reference for academic researchers and industry practitioners working in the field of ligand design, as well as those who work in the many areas in which the impact of ancillary ligand design has proven significant, for example synthetic organic chemistry, catalysis, medicinal chemistry,  polymer science and materials chemistry.
Licens varighed:
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 10 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • Hardback: 448 sider
  • Udgiver: John Wiley & Sons, Limited (Oktober 2016)
  • Forfattere: Stephen L. Buchwald, David Milstein, Mark Stradiotto og Rylan J. Lundgren
  • ISBN: 9781118839836

The design of ancillary ligands used to modify the structural and reactivity properties of metal complexes has evolved into a rapidly expanding sub-discipline in inorganic and organometallic chemistry. Ancillary ligand design has figured directly in the discovery of new bonding motifs and stoichiometric reactivity, as well as in the development of new catalytic protocols that have had widespread positive impact on chemical synthesis on benchtop and industrial scales.

Ligand Design in Metal Chemistry presents a collection of cutting-edge contributions from leaders in the field of ligand design, encompassing a broad spectrum of ancillary ligand classes and reactivity applications. Topics covered include:

  • Key concepts in ligand design
  • Redox non-innocent ligands
  • Ligands for selective alkene metathesis
  • Ligands in cross-coupling
  • Ligand design in polymerization
  • Ligand design in modern lanthanide chemistry
  • Cooperative metal-ligand reactivity
  • P,N Ligands for enantioselective hydrogenation
  • Spiro-cyclic ligands in asymmetric catalysis

This book will be a valuable reference for academic researchers and industry practitioners working in the field of ligand design, as well as those who work in the many areas in which the impact of ancillary ligand design has proven significant, for example synthetic organic chemistry, catalysis, medicinal chemistry,  polymer science and materials chemistry.

List of Contributors xii Foreword by Stephen L. Buchwald xiv Foreword by David Milstein xvi Preface xvii 1 Key Concepts in Ligand Design: An Introduction 1 Rylan J. Lundgren and Mark Stradiotto
1.1 Introduction 1
1.2 Covalent bond classification and elementary bonding concepts 2
1.3 Reactive versus ancillary ligands 4
1.4 Strong and weakfield ligands 4
1.5 Trans effect 6
1.6 Tolman electronic parameter 6
1.7 Pearson acid base concept 8
1.8 Multidenticity, ligand bite angle, and hemilability 8
1.9 Quantifying ligand steric properties 10
1.10 Cooperative and redox noninnocent ligands 12
1.11 Conclusion 12 References 13 2 Catalyst Structure and Cis-Trans Selectivity in Rutheniumbased Olefin Metathesis 15 Brendan L. Quigley and Robert H. Grubbs
2.1 Introduction 15
2.2 Metathesis reactions and mechanism 17
2.2.1 Types of metathesis reactions 17
2.2.2 Mechanism of Rucatalyzed olefin metathesis 19
2.2.3 Metallacycle geometry 19
2.2.4 Influencing syn-anti preference of metallacycles 22
2.3 Catalyst structure and E/Z selectivity 24
2.3.1 Trends in key catalysts 24
2.3.2 Catalysts with unsymmetrical NHCs 26
2.3.3 Catalysts with alternative NHC ligands 29
2.3.4 Variation of the anionic ligands 31
2.4 Zselective Rubased metathesis catalysts 33
2.4.1 Thiophenolatebased Zselective catalysts 33
2.4.2 Dithiolatebased Zselective catalysts 34
2.5 Cyclometallated Zselective metathesis catalysts 36
2.5.1 Initial discovery 36
2.5.2 Model for selectivity 37
2.5.3 Variation of the anionic ligand 38
2.5.4 Variation of the aryl group 40
2.5.5 Variation of the cyclometallated NHC substituent 41
2.5.6 Reactivity of cyclometallated Zselective catalysts 42
2.6 Conclusions and future outlook 42 References 43 3 Ligands for Iridiumcatalyzed Asymmetric Hydrogenation of Challenging Substrates 46 MarcAndré Müller and Andreas Pfaltz
3.1 Asymmetric hydrogenation 46
3.2 Iridium catalysts based on heterobidentate ligands 49
3.3 Mechanistic studies and derivation of a model for the enantioselective step 57
3.4 Conclusion 63 References 64 4 Spiro Ligands for Asymmetric Catalysis 66 ShouFei Zhu and QiLin Zhou
4.1 Development of chiral spiro ligands 66
4.2 Asymmetric hydrogenation 73
4.2.1 Rhcatalyzed hydrogenation of enamides 73
4.2.2 Rh or Ircatalyzed hydrogenation of enamines 73
4.2.3 Ircatalyzed hydrogenation of α,βunsaturated carboxylic acids 75
4.2.4 Ircatalyzed hydrogenation of olefins directed by the carboxy group 78
4.2.5 Ircatalyzed hydrogenation of conjugate ketones 79
4.2.6 Ircatalyzed hydrogenation of ketones 80
4.2.7 Rucatalyzed hydrogenation of racemic 2substituted aldehydes via dynamic kinetic resolution 81
4.2.8 Rucatalyzed hydrogenation of racemic 2substituted ketones via DKR 82
4.2.9 Ircatalyzed hydrogenation of imines 84
4.3 Carbon-carbon bondforming reactions 85
4.3.1 Nicatalyzed hydrovinylation of olefins 85
4.3.2 Rhcatalyzed hydroacylation 85
4.3.3 Rhcatalyzed arylation of carbonyl compounds and imines 86
4.3.4 Pdcatalyzed umpolung allylation reactions of aldehydes, ketones, and imines 87
4.3.5 Nicatalyzed threecomponent coupling reaction 87
4.3.6 Aucatalyzed Mannich reactions of azlactones 89
4.3.7 Rhcatalyzed hydrosilylation/cyclization reaction 89
4.3.8 Aucatalyzed [2 + 2] cycloaddition 90
4.3.9 Aucatalyzed cyclopropanation 91
4.3.10 Pdcatalyzed Heck reactions 91
4.4 Carbon-heteroatom bondforming reactions 91
4.4.1 Cucatalyzed NH bond insertion reactions 91
4.4.2 Cu, Fe, or Pdcatalzyed OH insertion reactions 93
4.4.3 Cucatalyzed SH, SiH and BH insertion reactions 95
4.4.4 Pdcatalyzed allylic amination 95
4.4.5 Pdcatalyzed allylic cyclization reactions with allenes 97
4.4.6 Pdcatalyzed alkene carboamination reactions 98
4.5 Conclusion 98 References 98 5 Application of Sterically Demanding Phosphine Ligands in PalladiumCatalyzed CrossCoupling leading to C(sp2)E Bond Formation (E = NH2 , OH, and F) 104 Mark Stradiotto and Rylan J. Lundgren
5.1 Introduction 104
5.1.1 General mechanistic overview and ancillary ligand design considerations 105
5.1.2 Reactivity challenges 107
5.2 Palladiumcatalyzed selective monoarylation of ammonia 108
5.2.1 Initial development 109
5.2.2 Applications in heterocycle synthesis 110
5.2.3 Application of Buchwald palladacycles and imidazolederived monophosphines 112
5.2.4 Heterobidentate κ2P,N ligands: chemoselectivity and room temperature reactions 115
5.2.5 Summary 117
5.3 Palladiumcatalyzed selective hydroxylation of (hetero)aryl halides 117
5.3.1 Initial development 118
5.3.2 Application of alternative ligand classes 120
5.3.3 Summary 122
5.4 Palladiumcatalyzed nucleophilic fluorination of (hetero)aryl (pseudo)halides 123
5.4.1 Development of palladiumcatalyzed C(sp2)F coupling employing (hetero)aryl triflates 124
5.4.2 Discovery of biaryl monophosphine ancillary ligand modification 125
5.4.3 Extending reactivity to (hetero)aryl bromides and iodides 127
5.4.4 Summary 128
5.5 Conclusions and outlook 129 Acknowledgments 130 References 131 6 PdNHeterocyclic Carbene Complexes in CrossCoupling Applications 134 Jennifer Lyn Farmer, Matthew Pompeo, and Michael G. Organ
6.1 Introduction 134
6.2 Nheterocyclic carbenes as ligands for catalysis 135
6.3 The relationship between Nheterocyclic carbene structure and reactivity 136
6.3.1 Steric parameters of NHC ligands 136
6.3.2 Electronic parameters of NHC ligands 138
6.3.3 Tuning the electronic properties of NHC ligands 139
6.4 Crosscoupling reactions leading to CC bonds that proceed through transmetalation 140
6.5 Kumada-Tamao-Corriu 141
6.6 Suzuki-Miyaura 148
6.6.1 The formation of tetraorthosubstituted (hetero)biaryl compounds 149
6.6.2 Enantioselective Suzuki-Miyaura coupling 153
6.6.3 Formation of sp3sp3 or sp2 sp3 bonds 156
6.6.4 The formation of (poly)heteroaryl compounds 158
6.7 Negishi coupling 163
6.7.1 Mechanistic studies: investigating the role of additives and the nature of the active transmetalating species 166
6.7.2 Selective crosscoupling of secondary organozinc reagents 168
6.8 Conclusion 170 References 171 7 Redox Noninnocent Ligands: Reactivity and Catalysis 176 Bas de Bruin, Pauline Gualco, and Nanda D. Paul
7.1 Introduction 176
7.2 Strategy I. Redox noninnocent ligands used to modify the Lewis acid-base properties of the metal 179
7.3 Strategy II. Redox noninnocent ligands as electron reservoirs 181
7.4 Strategy III. Cooperative ligandcentered reactivity based on redox active ligands 192
7.5 Strategy IV. Cooperative substratecentered radicaltype reactivity based on redox noninnocent substrates 195
7.6 Conclusion 200 References 201 8 Ligands for Ironbased Homogeneous Catalysts for the Asymmetric Hydrogenation of Ketones and Imines 205 Demyan E. Prokopchuk, Samantha A. M. Smith, and Robert H. Morris
8.1 Introduction: from ligands for ruthenium to ligands for iron 205
8.1.1 Ligand design elements in precious metal homogeneous catalysts for asymmetric direct hydrogenation and asymmetric transfer hydrogenation 205
8.1.2 Effective ligands for ironcatalyzed ketone and imine reduction 212
8.1.3 Ligand design elements for iron catalysts 213
8.2 First generation iron catalysts with symmetrical [6.5.6]PNNP ligands 216
8.2.1 Synthetic routes to ADH and ATH iron catalysts 217
8.2.2 Catalyst properties and mechanism of reaction 218
8.3 Second generation iron catalysts with symmetrical [5.5.5]PNNP ligands 220
8.3.1 Synthesis of second generation ATH catalysts 220
8.3.2 Asymmetric transfer hydrogenation catalytic properties and mechanism 222
8.3.3 Substrate scope 226
8.4 Third generation iron catalysts with unsymmetrical [5.5.5]PNHNP ligands 227
8.4.1 Synthesis of bis(tridentate)iron complexes and PNHNH2 ligands 227
8.4.2 Templateassisted synthesis of iron PNHNP complexes 228
8.4.3 Selected catalytic properties 229
8.4.4 Mechanism 230
8.5 Conclusions 231 Acknowledgments 232 References 232 9 Ambiphilic Ligands: Unusual Coordination and Reactivity Arising from Lewis Acid Moieties 237 Ghenwa Bouhadir and Didier Bourissou
9.1 Introduction 237
9.2 Design and structure of ambiphilic ligands 238
De oplyste priser er inkl. moms

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.