SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics, 8. udgave

Fundamentals of Fluid Mechanics

Philip M. Gerhart, Andrew L. Gerhart og John I. Hochstein
(2015)
Sprog: Engelsk
John Wiley & Sons, Incorporated
3.734,00 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 10 hverdage

Detaljer om varen

  • 8. Udgave
  • Hardback: 816 sider
  • Udgiver: John Wiley & Sons, Incorporated (December 2015)
  • Forfattere: Philip M. Gerhart, Andrew L. Gerhart og John I. Hochstein
  • ISBN: 9781118847138
"Fundamentals of Fluid Mechanics" offers comprehensive topical coverage, with varied examples and problems, application of visual component of fluid mechanics, and strong focus on effective learning. The text enables the gradual development of confidence in problem solving.The authors have designed their presentation to enable the gradual development of reader confidence in problem solving. Each important concept is introduced in easy-to-understand terms before more complicated examples are discussed. Continuing this book's tradition of extensive real-world applications, the 8th edition includes more "Fluid in the News "case study boxes in each chapter, new problem types, an increased number of real-world photos, and additional videos to augment the text material and help generate student interest in the topic. Example problems have been updated and numerous new photographs, figures, and graphs have been included. In addition, there are more videos designed to aid and enhance comprehension, support visualization skill building and engage students more deeply with the material and concepts.
1 Introduction 1 Learning Objectives 1
1.1 Some Characteristics of Fluids 3
1.2 Dimensions, Dimensional Homogeneity, and Units 4
1.2.1 Systems of Units 6
1.3 Analysis of Fluid Behavior 11
1.4 Measures of Fluid Mass and Weight 11
1.4.1 Density 11
1.4.2 Specific Weight 12
1.4.3 Specific Gravity 12
1.5 Ideal Gas Law 12
1.6 Viscosity 14
1.7 Compressibility of Fluids 20
1.7.1 Bulk Modulus 20
1.7.2 Compression and Expansion of Gases 21
1.7.3 Speed of Sound 22
1.8 Vapor Pressure 23
1.9 Surface Tension 24
1.10 A Brief Look Back in History 27
1.11
Chapter Summary and Study Guide 29 References 30 Problems 31 2 Fluid Statics 40 Learning Objectives 40
2.1 Pressure at a Point 40
2.2 Basic Equation for Pressure Field 41
2.3 Pressure Variation in a Fluid at Rest 43
2.3.1 Incompressible Fluid 44
2.3.2 Compressible Fluid 46
2.4 Standard Atmosphere 48
2.5 Measurement of Pressure 50
2.6 Manometry 52
2.6.1 Piezometer Tube 52
2.6.2 U-Tube Manometer 53
2.6.3 Inclined-Tube Manometer 55
2.7 Mechanical and Electronic Pressure-Measuring Devices 56
2.8 Hydrostatic Force on a Plane Surface 59
2.9 Pressure Prism 65
2.10 Hydrostatic Force on a Curved Surface 68
2.11 Buoyancy, Flotation, and Stability 70
2.11.1 Archimedes'' Principle 70
2.11.2 Stability 73
2.12 Pressure Variation in a Fluid with Rigid-Body Motion 74
2.12.1 Linear Motion 75
2.12.2 Rigid-Body Rotation 77
2.13
Chapter Summary and Study Guide 79 References 80 Problems 81 3 Elementary Fluid Dynamics--The Bernoulli Equation 101 Learning Objectives 101
3.1 Newton''s Second Law 101
3.2 F = m a along a Streamline 104
3.3 F = m a Normal to a Streamline 108
3.4 Physical Interpretations and Alternate Forms of the Bernoulli Equation 110
3.5 Static, Stagnation, Dynamic, and Total Pressure 113
3.6 Examples of Use of the Bernoulli Equation 117
3.6.1 Free Jets 118
3.6.2 Confined Flows 120
3.6.3 Flowrate Measurement 126
3.7 The Energy Line and the Hydraulic Grade Line 131
3.8 Restrictions on Use of the Bernoulli Equation 134
3.8.1 Compressibility Effects 134
3.8.2 Unsteady Effects 135
3.8.3 Rotational Effects 137
3.8.4 Other Restrictions 138
3.9
Chapter Summary and Study Guide 138 References 139 Problems 140 4 Fluid Kinematics 156 Learning Objectives 156
4.1 The Velocity Field 156
4.1.1 Eulerian and Lagrangian Flow Descriptions 159
4.1.2 One-, Two-, and Three-Dimensional Flows 160
4.1.3 Steady and Unsteady Flows 161
4.1.4 Streamlines, Streaklines, and Pathlines 161
4.2 The Acceleration Field 165
4.2.1 Acceleration and the Material Derivative 165
4.2.2 Unsteady Effects 168
4.2.3 Convective Effects 168
4.2.4 Streamline Coordinates 171
4.3 Control Volume and System Representations 173
4.4 The Reynolds Transport Theorem 175
4.4.1 Derivation of the Reynolds Transport Theorem 177
4.4.2 Physical Interpretation 182
4.4.3 Relationship to Material Derivative 182
4.4.4 Steady Effects 183
4.4.5 Unsteady Effects 184
4.4.6 Moving Control Volumes 185
4.4.7 Selection of a Control Volume 186
4.5
Chapter Summary and Study Guide 187 References 188 Problems 189 5 Finite Control Volume Analysis 197 Learning Objectives 197
5.1 Conservation of Mass--The Continuity Equation 198
5.1.1 Derivation of the Continuity Equation 198
5.1.2 Fixed, Nondeforming Control Volume 200
5.1.3 Moving, Nondeforming Control Volume 206
5.1.4 Deforming Control Volume 208
5.2 Newton''s Second Law--The Linear Momentum and Moment-of-Momentum Equations 211
5.2.1 Derivation of the Linear Momentum Equation 211
5.2.2 Application of the Linear Momentum Equation 212
5.2.3 Derivation of the Moment-of-Momentum Equation 226
5.2.4 Application of the Moment-of-Momentum Equation 227
5.3 First Law of Thermodynamics--The Energy Equation 234
5.3.1 Derivation of the Energy Equation 234
5.3.2 Application of the Energy Equation 237
5.3.3 The Mechanical Energy Equation and the Bernoulli Equation 241
5.3.4 Application of the Energy Equation to Nonuniform Flows 247
5.3.5 Combination of the Energy Equation and the Moment-of-Momentum Equation 250
5.4 Second Law of Thermodynamics--Irreversible Flow 251
5.4.1 Semi-infinitesimal Control Volume Statement of the Energy Equation 251
5.4.2 Semi-infinitesimal Control Volume Statement of the Second Law of Thermodynamics 251
5.4.3 Combination of the Equations of the First and Second Laws of Thermodynamics 252
5.5
Chapter Summary and Study Guide 253 References 255 Problems 256 6 Differential Analysis of Fluid Flow 277 Learning Objectives 277
6.1 Fluid Element Kinematics 278
6.1.1 Velocity and Acceleration Fields Revisited 279
6.1.2 Linear Motion and Deformation 279
6.1.3 Angular Motion and Deformation 280
6.2 Conservation of Mass 283
6.2.1 Differential Form of Continuity Equation 283
6.2.2 Cylindrical Polar Coordinates 286
6.2.3 The Stream Function 286
6.3 The Linear Momentum Equation 289
6.3.1 Description of Forces Acting on the Differential Element 290
6.3.2 Equations of Motion 292
6.4 Inviscid Flow 293
6.4.1 Euler''s Equations of Motion 293
6.4.2 The Bernoulli Equation 293
6.4.3 Irrotational Flow 295
6.4.4 The Bernoulli Equation for Irrotational Flow 297
6.4.5 The Velocity Potential 297
6.5 Some Basic, Plane Potential Flows 300
6.5.1 Uniform Flow 301
6.5.2 Source and Sink 302
6.5.3 Vortex 304
6.5.4 Doublet 307
6.6 Superposition of Basic, Plane Potential Flows 309
6.6.1 Source in a Uniform Stream--Half-Body 309
6.6.2 Rankine Ovals 312
6.6.3 Flow around a Circular Cylinder 314
6.7 Other Aspects of Potential Flow Analysis 319
6.8 Viscous Flow 320
6.8.1 Stress-Deformation Relationships 320
6.8.2 The Navier-Stokes Equations 321
6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows 322
6.9.1 Steady, Laminar Flow between Fixed Parallel Plates 323
6.9.2 Couette Flow 325
6.9.3 Steady, Laminar Flow in Circular Tubes 327
6.9.4 Steady, Axial, Laminar Flow in an Annulus 330
6.10 Other Aspects of Differential Analysis 332
6.10.1 Numerical Methods 332
6.11
Chapter Summary and Study Guide 333 References 334 Problems 335 7 Dimensional Analysis, Similitude, and Modeling 346 Learning Objectives 346
7.1 The Need for Dimensional Analysis 347
7.2 Buckingham Pi Theorem 349
7.3 Determination of Pi Terms 350
7.4 Some Additional Comments about Dimensional Analysis 355
7.4.1 Selection of Variables 355
7.4.2 Determination of Reference Dimensions 357
7.4.3 Uniqueness of Pi Terms 358
7.5 Determination of Pi Terms by Inspection 359
7.6 Common Dimensionless Groups in Fluid Mechanics 361
7.7 Correlation of Experimental Data 366
7.7.1 Problems with One Pi Term 366
7.7.2 Problems with Two or More Pi Terms 367
7.8 Modeling and Similitude 370
7.8.1 Theory of Models 370
7.8.2 Model Scales 373
7.8.3 Practical Aspects of Using Models 374
7.9 Some Typical Model Studies 376
7.9.1 Flow through Closed Conduits 376
7.9.2 Flow around Immersed Bodies 378
7.9.3 Flow with a Free Surface 382
7.10 Similitude Based on Governing Differential Equations 385
7.11
Chapter Summary and Study Guide 388 References 389 Problems 390 8 Viscous Flow In Pipes 401 Learning Objectives 401
8.1 General Characteristics of Pipe Flow 402
8.1.1 Laminar or Turbulent Flow 403
8.1.2 Entrance Region and Fully Developed Flow 405
8.1.3 Pressure and Shear Stress 406
8.2 Fully Developed Laminar Flow 407
8.2.1 From F = m a Applied Directly to a Fluid Element 408
8.2.2 From the Navier-Stokes Equations 412
8.2.3 From Dimensional Analysis 413
8.2.4 Energy Considerations 415
8.3 Fully Developed Turbulent Flow 417
8.3.1 Transition from Laminar to Turbulent Flow 417
8.3.2 Turbulent Shear Stress 419
8.3.3 Turbulent Velocity Profile 423
8.3.4 Turbulence Modeling 427
8.3.5 Chaos and Turbulence 427
8.4 Dimensional Analysis of Pipe Flow 427
8.4.1 Major Losses 428
8.4.2 Minor Losses 433
8.4.3 Noncircular Conduits 443
8.5 Pipe Flow Examples 446
8.5.1 Single Pipes 446
8.5.2 Multiple Pipe Systems 456
8.6 Pipe Flowrate Measurement 460
8.6.1 Pipe Flowrate Meters 460
8.6.2 Volume Flowmeters 465
8.7
Chapter Summary and Study Guide 466 References 467, Problems 468 9 Flow Over Immersed Bodies 482 Learning Objectives 482
9.1 General External Flow Characteristics 483
9.1.1 Lift and Drag Concepts 484
9.1.2 Characteristics of Flow Past an Object 487
9.2 Boundary Layer Characteristics 491
9.2.1 Boundary Layer Structure and Thickness on a Flat Plate 491
9.2.2 Prandtl/Blasius Boundary Layer Solution 495
9.2.3 Momentum Integral Boundary Layer Equation for a Flat Plate 499
9.2.4 Transition from
De oplyste priser er inkl. moms

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.