SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems, 1. udgave
Søgbar e-bog

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems Vital Source e-bog

Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga og Remus Teodorescu
(2016)
John Wiley & Sons
1.189,00 kr.
Leveres umiddelbart efter køb
Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems

Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga og Remus Teodorescu
(2016)
Sprog: Engelsk
John Wiley & Sons, Limited
1.218,00 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 10 hverdage

Detaljer om varen

  • 1. Udgave
  • Vital Source searchable e-book (Reflowable pages)
  • Udgiver: John Wiley & Sons (August 2016)
  • Forfattere: Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga og Remus Teodorescu
  • ISBN: 9781118851548
Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.
Licens varighed:
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 10 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • Hardback: 412 sider
  • Udgiver: John Wiley & Sons, Limited (Oktober 2016)
  • Forfattere: Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga og Remus Teodorescu
  • ISBN: 9781118851562

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission.

Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids.

Key features:

  • Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland.
  • Comprehensive explanation of MMC application in HVDC and MTDC transmission technology.
  • Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore.
  • Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals.
  • A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website.

This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.

Preface xiii Acknowledgements xv About the Companion Website xvii Nomenclature xix Introduction 1 1 Introduction to Modular Multilevel Converters 7
1.1 Introduction 7
1.2 The Two-Level Voltage Source Converter 9
1.2.1 Topology and Basic Function 9
1.2.2 Steady-State Operation 12
1.3 Benefits of Multilevel Converters 15
1.4 Early Multilevel Converters 17
1.4.1 Diode Clamped Converters 17
1.4.2 Flying Capacitor Converters 20
1.5 Cascaded Multilevel Converters 23
1.5.1 Submodules and Submodule Strings 23
1.5.2 Modular Multilevel Converter with Half-Bridge Submodules 28
1.5.3 Other Cascaded Converter Topologies 43
1.6 Summary 57 2 Main-Circuit Design 60
2.1 Introduction 60
2.2 Properties and Design Choices of Power Semiconductor Devices for High-Power Applications 61
2.2.1 Historical Overview of the Development Toward Modern Power Semiconductors 61
2.2.2 Basic Conduction Properties of Power Semiconductor Devices 64
2.2.3 P-N Junctions for Blocking 65
2.2.4 Conduction Properties and the Need for Carrier Injection 67
2.2.5 Switching Properties 72
2.2.6 Packaging 73
2.2.7 Reliability of Power Semiconductor Devices 80
2.2.8 Silicon Carbide Power Devices 84
2.3 Medium-Voltage Capacitors for Submodules 92
2.3.1 Design and Fabrication 93
2.3.2 Self-Healing and Reliability 95
2.4 Arm Inductors 96
2.5 Submodule Configurations 98
2.5.1 Existing Half-Bridge Submodule Realizations 99
2.5.2 Clamped Single-Submodule 104
2.5.3 Clamped Double-Submodule 105
2.5.4 Unipolar-Voltage Full-Bridge Submodule 106
2.5.5 Five-Level Cross-Connected Submodule 107
2.5.6 Three-Level Cross-Connected Submodule 107
2.5.7 Double Submodule 108
2.5.8 Semi-Full-Bridge Submodule 109
2.5.9 Soft-Switching Submodules 110
2.6 Choice of Main-Circuit Parameters 112
2.6.1 Main Input Data 112
2.6.2 Choice of Power Semiconductor Devices 114
2.6.3 Choice of the Number of Submodules 115
2.6.4 Choice of Submodule Capacitance 117
2.6.5 Choice of Arm Inductance 117
2.7 Handling of Redundant and Faulty Submodules 118
2.7.1 Method 1 118
2.7.2 Method 2 119
2.7.3 Comparison of Method 1 and Method 2 120
2.7.4 Handling of Redundancy Using IGBT Stacks 121
2.8 Auxiliary Power Supplies for Submodules 121
2.8.1 Using the Submodule Capacitor as Power Source 121
2.8.2 Power Supplies with High-Voltage Inputs 123
2.8.3 The Tapped-Inductor Buck Converter 125
2.9 Start-Up Procedures 126
2.10 Summary 126 3 Dynamics and Control 133
3.1 Introduction 133
3.2 Fundamentals 134
3.2.1 Arms 135
3.2.2 Submodules 135
3.2.3 AC Bus 136
3.2.4 DC Bus 136
3.2.5 Currents 136
3.3 Converter Operating Principle and Averaged Dynamic Model 137
3.3.1 Dynamic Relations for the Currents 137
3.3.2 Selection of the Mean Sum Capacitor Voltages 137
3.3.3 Averaging Principle 138
3.3.4 Ideal Selection of the Insertion Indices 140
3.3.5 Sum-Capacitor-Voltage Ripples 141
3.3.6 Maximum Output Voltage 144
3.3.7 DC-Bus Dynamics 146
3.3.8 Time Delays 148
3.4 Per-Phase Output-Current Control 148
3.4.1 Tracking of a Sinusoidal Reference Using a PI Controller 149
3.4.2 Resonant Filters and Generalized Integrators 150
3.4.3 Tracking of a Sinusoidal Reference Using a PR Controller 152
3.4.4 Parameter Selection for a PR Current Controller 153
3.4.5 Output-Current Controller Design 157
3.5 Arm-Balancing (Internal) Control 161
3.5.1 Circulating-Current Control 163
3.5.2 Direct Voltage Control 163
3.5.3 Closed-Loop Voltage Control 166
3.5.4 Open-Loop Voltage Control 168
3.5.5 Hybrid Voltage Control 172
3.6 Three-Phase Systems 175
3.6.1 Balanced Three-Phase Systems 175
3.6.2 Imbalanced Three-Phase Systems 175
3.6.3 Instantaneous Active Power 176
3.6.4 Wye (Y) and Delta (Î?) Connections 177
3.6.5 Harmonics 177
3.6.6 Space Vectors 178
3.6.7 Instantaneous Power 182
3.6.8 Selection of the Space-Vector Scaling Constant 184
3.7 Vector Output-Current Control 184
3.7.1 PR (PI) Controller 186
3.7.2 Reference-Vector Saturation 188
3.7.3 Transformations 188
3.7.4 Zero-Sequence Injection 190
3.8 Higher-Level Control 192
3.8.1 Phase-Locked Loop 193
3.8.2 Open-Loop Active- and Reactive-Power Control 197
3.8.3 DC-Bus-Voltage Control 198
3.8.4 Power-Synchronization Control 200
3.9 Control Architectures 207
3.9.1 Communication Network 209
3.9.2 Fault-Tolerant Communication Networks 211
3.10 Summary 212 4 Control under Unbalanced Grid Conditions 214
4.1 Introduction 214
4.2 Grid Requirements 214
4.3 Shortcomings of Conventional Vector Control 215
4.3.1 PLL with Notch Filter 216
4.4 Positive/Negative-Sequence Extraction 219
4.4.1 DDSRF-PNSE 219
4.4.2 DSOGI-PNSE 221
4.5 Injection Reference Strategy 223
4.5.1 PSI with PSI-LVRT Compliance 225
4.5.2 MSI-LVRT Mixed Positive- and Negative-Sequence Injection with both PSI-LVRT and NSI-LVRT Compliance 226
4.6 Component-Based Vector Output-Current Control 226
4.6.1 DDSRF-PNSE-Based Control 226
4.6.2 DSOGI-PNSE-Based Control 227
4.7 Summary 228 5 Modulation and Submodule Energy Balancing 232
5.1 Introduction 232
5.2 Fundamentals of Pulse-Width Modulation 233
5.2.1 Basic Concepts 233
5.2.2 Performance of Modulation Methods 234
5.2.3 Reference Third-Harmonic Injection in Three-Phase Systems 235
5.3 Carrier-Based Modulation Methods 236
5.3.1 Two-Level Carrier-Based Modulation 236
5.3.2 Analysis by Fourier Series Expansion 237
5.3.3 Polyphase Systems 242
5.4 Multilevel Carrier-Based Modulation 243
5.4.1 Phase-Shifted Carriers 243
5.4.2 Level-Shifted Carriers 250
5.5 Nearest-Level Control 252
5.6 Submodule Energy Balancing Methods 256
5.6.1 Submodule Sorting 256
5.6.2 Predictive Sorting 259
5.6.3 Tolerance Band Methods 263
5.6.4 Individual Submodule-Capacitor-Voltage Control 269
5.7 Summary 270 6 Modeling and Simulation 272
6.1 Introduction 272
6.2 Leg-Level Averaged (LLA) Model 274
6.3 Arm-Level Averaged (ALA) Model 275
6.3.1 Arm-Level Averaged Model with Blocking Capability (ALA-BLK) 276
6.4 Submodule-Level Averaged (SLA) Model 278
6.4.1 Vectorized Simulation Models 279
6.5 Submodule-Level Switched (SLS) Model 280
6.5.1 Multiple Phase-Shifted Carrier (PSC) Simulation 281
6.6 Summary 281 7 Design and Optimization of MMC-HVDC Schemes for Offshore Wind-Power Plant Application 283
7.1 Introduction 283
7.2 The Influence of Regulatory Frameworks on the Development Strategies for Offshore HVDC Schemes 284
7.2.1 UK''s Regulatory Framework for Offshore Transmission Assets 285
7.2.2 Germany''s Regulatory Framework for Offshore Transmission Assets 286
7.3 Impact of Regulatory Frameworks on the Functional Requirements and Design of Offshore HVDC Terminals 286
7.4 Components of an Offshore MMC-HVDC Converter 287
7.4.1 Offshore HVDC Converter Transformer 289
7.4.2 Phase Reactors and DC Pole Reactors 290
7.4.3 Converter Valve Hall 292
7.4.4 Control and Protection Systems 293
7.4.5 AC and DC Switchyards 293
7.4.6 Auxiliary Systems 293
7.5 Offshore Platform Concepts 294
7.5.1 Accommodation Offshore 295
7.6 Onshore HVDC Converter 295
7.6.1 Onshore DC Choppers/Dynamic Brakers 296
7.6.2 Inrush Current Limiter Resistors 297
7.7 Recommended System Studies for the Development and Integration of an Offshore HVDC Link to a WPP 298
7.7.1 Conceptual and Feasibility Studies with Steady-State Load Flow 299
7.7.2 Short-Circuit Analysis 301
7.7.3 Dynamic System Performance Analysis 301
7.7.4 Transient Stability Analysis 301
7.7.5 Harmonic Analysis 302
7.7.6 Ferroresonance 302
7.8 Summary 303 8 MMC-HVDC Standards and Commissioning Procedures 305
8.1 Introduction 305
8.2 CIGRE and IEC Activities for the Standardization of MMC-HVDC Technology 306
8.2.1 Hierarchy of Available and Applicable Codes, Standards and Best Practice Recommendations for MMC-HVDC Projects 309
8.3 MMC-HVDC Commissioning and Factory and Site Acceptance Tests 309
8.3.1 Pre-Commissioning 311
8.3.2 Offsite Commissioning Tests or Factory Acceptance Tests 312
8.3.3 Onsite Testing and Site Acceptance Tests 313
8.3.4 Onsite Energizing Tests 314
8.4 Summary 317 9 Control and Protection of MMC-HVDC under AC and DC Network Fault Contingencies 318
9.1 Introduction 318
9.2 Two-Level VSC-HVDC Fault Characteristics under Unbalanced AC Network Contingency 319
9.2.1 Two-Level VSC-HVDC Fault Characteristics under DC Fault Contingency 321
9.3 MMC-HVDC Fault Characteristics under Unbalanced AC Network Contingency 322
9.3.1 Internal AC Bus Fault Conditions at the Secondary Side of the Converter Transformer 323
9.4 DC Pole-to-Ground Short-Circuit Fault Characteristics of the Half-Bridge MMC-HVDC 325
9.4.1 DC Pole-to-Pole Short-Circuit Fault Characteristics of the Half-Bridge MMC-HVDC 325
9.5 MMC-HVDC Component Failures 327
De oplyste priser er inkl. moms

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.