SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Harnessing Bistable Structural Dynamics - For Vibration Control, Energy Harvesting and Sensing

Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting and Sensing, 1. udgave
Søgbar e-bog

Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting and Sensing Vital Source e-bog

Ryan L. Harne og Kon-Well Wang
(2017)
John Wiley & Sons
1.585,00 kr.
Leveres umiddelbart efter køb
Harnessing Bistable Structural Dynamics - For Vibration Control, Energy Harvesting and Sensing

Harnessing Bistable Structural Dynamics

For Vibration Control, Energy Harvesting and Sensing
Ryan L. Harne og Kon-Well Wang
(2017)
Sprog: Engelsk
John Wiley & Sons, Incorporated
1.730,00 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 10 hverdage

Detaljer om varen

  • 1. Udgave
  • Vital Source searchable e-book (Reflowable pages)
  • Udgiver: John Wiley & Sons (Januar 2017)
  • Forfattere: Ryan L. Harne og Kon-Well Wang
  • ISBN: 9781119128076
This book formulates and consolidates a coherent understanding of how harnessing the dynamics of bistable structures may enhance the technical fields of vibration control, energy harvesting, and sensing. Theoretical rigor and practical experimental insights are provided in numerous case studies. The three fields have received significant research interest in recent years, particularly in regards to the advantageous exploitation of nonlinearities. Harnessing the dynamics of bistable structures--that is, systems with two configurations of static equilibria--is a popular subset of the recent efforts. This book provides a timely consolidation of the advancements that are relevant to a large body of active researchers and engineers in these areas of understanding and leveraging nonlinearities for engineering applications. Coverage includes: Provides a one-source reference on how bistable system dynamics may enhance the aims of vibration control, energy harvesting, and sensing with a breadth of case studies Includes details for comprehensive methods of analysis, numerical simulation, and experimentation that are widely useful in the assessment of the dynamics of bistable structures Details approaches to evaluate, by analytical and numerical analysis and experiment, the influences of harmonic and random excitations, multiple degrees-of-freedom, and electromechanical coupling towards tailoring the underlying bistable system dynamics Establishes how intelligently utilizing bistability could enable technology advances that would be useful in various industries, such as automotive engineering, aerospace systems, microsystems and microelectronics, and manufacturing
Licens varighed:
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 10 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • Hardback: 408 sider
  • Udgiver: John Wiley & Sons, Incorporated (Marts 2017)
  • Forfattere: Ryan L. Harne og Kon-Well Wang
  • ISBN: 9781119128045

This book formulates and consolidates a coherent understanding of how harnessing the dynamics of bistable structures may enhance the technical fields of vibration control, energy harvesting, and sensing. Theoretical rigor and practical experimental insights are provided in numerous case studies. The three fields have received significant research interest in recent years, particularly in regards to the advantageous exploitation of nonlinearities. Harnessing the dynamics of bistable structures--that is, systems with two configurations of static equilibria--is a popular subset of the recent efforts. This book provides a timely consolidation of the advancements that are relevant to a large body of active researchers and engineers in these areas of understanding and leveraging nonlinearities for engineering applications.

Coverage includes:

  • Provides a one-source reference on how bistable system dynamics may enhance the aims of vibration control, energy harvesting, and sensing with a breadth of case studies
  • Includes details for comprehensive methods of analysis, numerical simulation, and experimentation that are widely useful in the assessment of the dynamics of bistable structures
  • Details approaches to evaluate, by analytical and numerical analysis and experiment, the influences of harmonic and random excitations, multiple degrees-of-freedom, and electromechanical coupling towards tailoring the underlying bistable system dynamics
  • Establishes how intelligently utilizing bistability could enable technology advances that would be useful in various industries, such as automotive engineering, aerospace systems, microsystems and microelectronics, and manufacturing
Preface xi 1 Background and Introduction 1
1.1 Examples of Bistable Structures and Systems 1
1.2 Characteristics of Bistable Structural Dynamics 6
1.2.1 Coexistence of Singleperiodic, Steadystate Responses 8
1.2.2 Sensitivity to Initial Conditions 14
1.2.3 Aperiodic or Chaotic Oscillations 15
1.2.4 Excitation Level Dependence 16
1.2.5 Stochastic Resonance 21
1.2.6 Harmonic Energy Diffusion 22
1.3 The Exploitation of Bistable Structural Dynamics 24
1.3.1 Vibration Control 24
1.3.2 Vibration Energy Harvesting 27
1.3.3 Sensing and Detection 30
1.4 Outline of This Book 33 References 34 2 Mathematical Modeling and Analysis of Bistable Structural Dynamics 39
2.1 A Linear Oscillator 39
2.1.1 Free Response 39
2.1.2 Baseexcited Response 44
2.2 Stability 46
2.3 A Monostable Nonlinear Oscillator 48
2.4 A Bistable Oscillator 50
2.4.1 Free Response and Stability 50
2.4.2 Baseexcited Response 54
2.5 Analytical Methods for Steadystate Dynamics 57
2.5.1 Small Oscillations 58
2.5.2 Large Oscillations 62
2.6 Bifurcations of Bistable Systems 67
2.7 Multiple DegreesofFreedom Systems 69
2.8 An Electromechanical Bistable System 70
2.9 Summary 71 References 72 3 Vibration Control 75
3.1 Topic Review 75
3.1.1 Damping 77
3.1.2 Isolation 81
3.1.3 Absorption 83
3.1.4 Summary 86
3.2 High and Adaptable Damping Using Bistable Snapthrough Dynamics 86
3.2.1 Model Formulation of the Bistable Device 87
3.2.2 A Metric for Energy Dissipation Capacity 89
3.2.3 Numerical Analysis of the Baseexcited Response 89
3.2.4 Energy Dissipation Features of the Dynamic Types 90
3.2.5 Influences Due to Change in Frequency and Initial Conditions 93
3.2.6 Experimental Studies 96
3.2.7 Summary 100
3.3 Isolating Structures Under Large Amplitude Excitations Through Activation of Low Amplitude Interwell Dynamics: Criteria for Excitationinduced Stability 100
3.3.1 Governing Equation Formulation of the Bistable Oscillator 101
3.3.2 Stability of the Analytically Predicted Interwell Dynamics 102
3.3.3 Validation of the Stability Criteria Using Numerical Simulations 105
3.3.4 Experimental Validation of the Stability Criteria 109
3.3.5 Summary 115
3.4 Exploiting Excitationinduced Stability for Dualstage Vibration Isolation 115
3.4.1 Governing Equation Formulation of a Bistable Dualstage Vibration Isolator 116
3.4.2 Analytical Solution of the Governing Equations 118
3.4.3 Examining the Stability of Analytical Predictions 119
3.4.4 Comparison of Isolator Performance with a Counterpart Linear Design 119
3.4.5 Explanation of the Valley Response 122
3.4.6 Investigating the Design Parameter Influences 123
3.4.7 Influence of Initial Conditions 126
3.4.8 Prototype Investigations: Numerical and Experimental Validation 131
3.4.9 Summary 136
3.5 Dynamic Stabilization of a Vibration Suspension Platform Attached to an Excited Host Structure 137
3.5.1 Model Formulation of the Bistable Suspension Coupled to a Flexible Structure 138
3.5.2 Analytical Solution of the Governing Equations 140
3.5.3 Description of the Linear Suspension for Comparison 141
3.5.4 Analytical and Numerical Assessment of Key Suspension Dynamics 142
3.5.5 Excitation Condition Influences 145
3.5.6 Experimental Suspension System Platform 148
3.5.7 Experimental and Analytical Comparisons of Isolation Performance 148
3.5.8 Summary 154
3.6 Snapthrough Dynamics for Vibration Absorption 154
3.6.1 Model Formulation of a Bistable Vibration Absorber 155
3.6.2 Analytical Investigation of Force Cancellation Performance 159
3.6.3 Experimental Investigation of Force Cancellation Performance 164
3.6.4 Summary 172 References 173 4 Vibration Energy Harvesting 181
4.1 Topic Review 181
4.1.1 Experimental and Numerical Developments in Energy Harvesting with Bistable Devices 183
4.1.2 Analytical Developments in Energy Harvesting with Bistable Devices 189
4.1.3 Summary 191
4.2 Effective and Straightforward Design Guidelines for High Performance Operations 191
4.2.1 Analytical Formulation of Bifurcations Associated with Achieving Snapthrough 192
4.2.2 Experimental Validation of the Analytical Premise 196
4.2.3 Derivation of Criteria for Sustaining High Power Generation Performance 198
4.2.4 Evaluation of the Criteria Accuracy 199
4.2.5 Summary 200
4.3 Understanding Superharmonic Energy Diffusion in Bistable Energy Harvesters 201
4.3.1 Bistable Energy Harvester Modeling: Electromechanical Governing Equations 202
4.3.2 Amplitude Response Equations 204
4.3.3 Selection of System Parameters for Investigation 207
4.3.4 Comparison to 1Term Harmonic Balance Solution 208
4.3.5 Effects of Varying Excitation Amplitude 210
4.3.6 Superharmonic Energy Harvesting Analysis 215
4.3.7 Experimentally Investigating the Contribution of Total Harvested Energy by the Superharmonic Component 217
4.3.8 Summary 221
4.4 Optimal and Robust Energy Harvesting from Realistic Stochastic Excitations Using the Dynamics of Structures Designed Near the Elastic Stability Limit 222
4.4.1 Modeling of Nonlinear Energy Harvester Platform 223
4.4.2 Preliminary Remarks on Accuracy, Comparisons, and Experimentation 227
4.4.3 Noise Bandwidth and Level Influences on Ideal Designs 229
4.4.4 Criticality of Design at the Elastic Stability Limit 232
4.4.5 Impact of Asymmetry on Energy Harvesting Performance 233
4.4.6 Summary 235
4.5 Amplifying the Snapthrough Dynamics of a Bistable Energy Harvester Using an Appended Linear Oscillator 237
4.5.1 Coupled Energy Harvesting System Governing Equations 239
4.5.2 Analytical Formulation by the Harmonic Balance Method: 1Term Prediction 240
4.5.3 Analytical Formulation by the Harmonic Balance Method: 2Term Prediction 243
4.5.4 Computing the Fundamental and Superharmonic Average Power and Power Density 246
4.5.5 Roles of the Auxiliary Linear Oscillator 247
4.5.6 Roles of the Superharmonic Dynamics in the Energy Harvesting Performance 251
4.5.7 Experimental Investigations of the Multiharmonic Dynamics Enhancement via the Auxiliary Linear Oscillator 255
4.5.8 Summary 260
4.6 A Linear Dynamic Magnifier Approach to Bistable Energy Harvesting 261
4.6.1 Governing Equations for the Bistable Harvester with Linear Dynamic Magnifier 262
4.6.2 Approximate Solution by the Method of Harmonic Balance 264
4.6.3 Analytical and Numerical Investigations on the Roles of the Linear Dynamic Magnifier Stage 267
4.6.3.1 Effect of the Mass Ratio 267
4.6.3.2 Effect of the Frequency Ratio 271
4.6.3.3 Effect of the Electromechanical Coupling 272
4.6.4 Interpreting Frequency Response Characteristics of the Coupled Energy Harvester System 275
4.6.5 Experimental Validations and Investigations 277
4.6.5.1 Effect of Bistable Harvester Electromechanical Coupling 278
4.6.5.2 Effect of Bistable Harvester Mass 279
4.6.6 Summary 280 References 282 5 Sensing and Detection 291
5.1 Topic Review 291
5.1.1 Bistable Microsystems 293
5.1.2 Bifurcationbased Microsystem Applications 298
5.1.3 Summary 300
5.2 Detecting Changes in Structures by Harnessing the Dynamics of Bistable Circuits 301
5.2.1 Bifurcationbased Sensing Platform Based on Bistable Circuitry 302
5.2.2 Bistable Circuit Model Formulation and Validation 305
5.2.3 Investigation of Operational Parameters Suited for Bifurcationbased Sensing 308
5.2.4 Experimental Study of the Proposed Bifurcationbased Sensing Approach 309
5.2.5 Summary 311
5.3 Improving Damage Identification Robustness to Noise and Damping Using an Integrated Bistable and Adaptive Piezoelectric Circuit 312
5.3.1 An Integrated Bistable and Adaptive Piezoelectric Circuitry for Bifurcationbased SHM 313
5.3.2 Overview of Damage Identification Using Integrated Adaptive Piezoelectric Circuitry 316
5.3.3 Verification of Bifurcationbased Detection of Frequency Shifts 318
5.3.4 Improving the Accuracy of BB Frequency Shift Detection Through a Greater Number of Evaluations 321
5.3.5 Investigation of Noise Influences for a Mildly Damped Structure 323
5.3.6 Investigation of Noise Influences for a More Highly Damped Structure 325
5.3.7 Summary 327
5.4 Passive Microscale Mass Detection and Progressive Quantification by Exploiting the Bifurcations and Resonant Dynamics of a Two DOF Bistable Sensor 327
5.4.1 Sensor Architecture and Operational Principle Overview 330
5.4.2 Experimental Proofofconcept Sensor Architecture 334
5.4.3 Model Formulation of the Sensor Architecture 336
5.4.4 Experimental Validation of the Model Formulation and Numerical Examinations of System Operation 337
5.4.5 Examination of Passive Quantification of Mass Adsorption via Sequential Activation of Bifurcations 340
5.4.6 Experimental Comparison of Bifurcation Triggering and Fundamental Mode Natural Frequency Reduction as Consistent Detection Metrics 342
5.4.7 Stochastic Modeling and Noise Sensitivities 344
5.4.8 Operational Parameter In
De oplyste priser er inkl. moms

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.