SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Nanobiomaterials - Classification, Fabrication and Biomedical Applications

Nanobiomaterials: Classification, Fabrication and Biomedical Applications, 1. udgave
Søgbar e-bog

Nanobiomaterials: Classification, Fabrication and Biomedical Applications Vital Source e-bog

Xiumei Wang
(2017)
John Wiley & Sons
1.899,00 kr.
Leveres umiddelbart efter køb
Nanobiomaterials - Classification, Fabrication and Biomedical Applications

Nanobiomaterials

Classification, Fabrication and Biomedical Applications
Xiumei Wang, Murugan Ramalingam, Xiangdong Kong og Lingyun Zhao
(2018)
Sprog: Engelsk
John Wiley & Sons, Incorporated
2.081,00 kr.
Denne titel er udgået og kan derfor ikke bestilles. Vi beklager.

Detaljer om varen

  • 1. Udgave
  • Vital Source searchable e-book (Reflowable pages)
  • Udgiver: John Wiley & Sons (November 2017)
  • ISBN: 9783527698653
Materials Scientists, Medicinal Chemists, Pharmaceutical Chemists, Medical Laboratories, Libraries
Licens varighed:
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 10 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • Hardback: 512 sider
  • Udgiver: John Wiley & Sons, Incorporated (Februar 2018)
  • Forfattere: Xiumei Wang, Murugan Ramalingam, Xiangdong Kong og Lingyun Zhao
  • ISBN: 9783527340675
Written by an international team of editors and contributors from renowned universities and institutes, this book addresses the latest research in the field of nanobiomaterials, covering nanotechnologies for their fabrication, developments in biomedical applications, and the challenges of biosafety in clinic uses.
Clearly structured, the volume defines the scope and classification of the field, resulting in a broad overview from fundamental principles to current technological advances, and from materials synthesis to biomedical applications along with future trends.
Preface xvii
Part I Introduction 1 1 Nanobiomaterials: State of the Art 3 JingWang, Huihua Li, Lingling Tian, and Seeram Ramakrishna
1.1 Introduction 3
1.1.1 Properties of Nanobiomaterials 4
1.1.2 Interaction between Nanobiomaterials and Biological System 4
1.1.3 Biocompatibility and Toxicity of Nanobiomaterials 5
1.2 Nanobiomaterials for Tissue Engineering Applications 6
1.2.1 Vascular Tissue Engineering 7
1.2.2 Neural Tissue Engineering 9
1.2.3 Cartilage Tissue Engineering 12
1.2.4 Bone Tissue Engineering 13
1.3 Nanobiomaterials for Drug Delivery Applications 15
1.3.1 Carbon-Based Nanobiomaterials 15
1.3.2 Silica Nanoparticles 17
1.3.3 Polymer-Based Nanomaterials 18
1.4 Nanobiomaterials for Imaging and Biosensing Applications 18
1.4.1 Polymer-Based Nanobiomaterials 19
1.4.2 Quantum-Dot-Based Nanobiomaterials 19
1.4.3 Magnetic Nanoparticles 21
1.4.4 Gold Nanobiomaterials 22
1.4.5 Organic-Inorganic-Based Materials 23
1.4.6 CNT-Based Nanobiomaterials 23
1.5 Conclusions and Perspectives 24 References 25
Part II Classification of Nanobiomaterials 37 2 Metallic Nanobiomaterials 39 Magesh S, Vasanth G, Revathi A, Geetha Manivasagam, and Murugan Ramalingam
2.1 Introduction 39
2.2 Conventional to Ultrafine-Grained Materials - A Novel Transformation 40
2.2.1 Bottom-Up Approach 42
2.2.2 Top-Down Approach 43
2.3 Severe Plastic Deformation (SPD) 43
2.3.1 Equal Channel Angular Pressing (ECAP) 43
2.3.2 High-Pressure Torsion (HPT) 45
2.3.3 Accumulative Roll Bonding (ARB) 46
2.3.4 Other SPD Processes 47
2.3.4.1 Multipass Caliber Rolling (MPCR) 47
2.3.4.2 DisintegratedMelt Deposition (DMD) 47
2.4 Mechanical Behavior of Metallic Nanobiomaterials 48
2.5 Corrosion 49
2.5.1 Corrosion Mechanism 50
2.5.2 Passivation of Metallic Biomaterials 50
2.5.3 Biological Environment and Its Influence on Corrosion of Metallic Biomaterials 51
2.5.4 Corrosion Behavior of Metallic Nanobiomaterials 53
2.6 Wear 54
2.6.1 Wear Assessment 55
2.6.2 Wear Aspects of Metallic Nanobiomaterials 56
2.6.2.1 ImprovedWear Resistance of Metallic Nanobiomaterials 56
2.6.2.2 DetrimentalWear Properties of Metallic Nanobiomaterials 57
2.6.2.3 No Effect 57
2.7 Biocompatibility of Metallic Nanobiomaterials 57
2.8 Biomedical Application of Metallic Nanobiomaterials 59
2.9 Future Aspects 59 References 60 3 Polymeric Nanobiomaterials 65 Deepti Rana, Keerthana Ramasamy, Samad Ahadian, Geetha Manivasagam, XiumeiWang, and Murugan Ramalingam
3.1 Introduction 65
3.2 Types of Polymeric Nanobiomaterials 66
3.3 Polymeric Nanofibers 67
3.4 Polymeric Nanofibers to Provide Microenvironmental Cues 69
3.5 Biological Relevance of Polymeric Nanofibers 71
3.6 Recent Trends in Polymeric Nanofibers 72
3.6.1 Hybrid Nanofibers 72
3.6.2 Gradient Nanofibers 74
3.7 Applications of Nanofibers in RegenerativeMedicine 75
3.7.1 Bone Tissue Engineering 75
3.7.2 Nerve Tissue Engineering 77
3.7.3 Vascular Tissue Engineering 78
3.8 Concluding Remarks 79 Acknowledgment 80 References 80 4 Carbon-Based Nanobiomaterials 85 Samad Ahadian, Farhad Batmanghelich, Raquel Obregón, Deepti Rana, Javier Ramón-Azcón, Ramin Banan Sadeghian, and Murugan Ramalingam
4.1 Introduction 85
4.2 Tissue Engineering 87
4.2.1 Neural Tissue Engineering 87
4.2.1.1 CNTs in Neural Tissue Engineering 88
4.2.1.2 Graphene in Neural Tissue Engineering 89
4.2.2 Bone Tissue Engineering 89
4.2.2.1 CNTs in Bone Tissue Engineering 89
4.2.2.2 Graphene in Bone Tissue Engineering 92
4.3 Gene and Drug Delivery 92
4.3.1 CNTs in Delivery Systems 92
4.3.2 Graphene in Delivery Systems 93
4.4 Biosensing 93
4.4.1 CNTs in Biosensing 93
4.4.2 Graphene in Biosensing 94
4.5 Biomedical Imaging 95
4.5.1 CNTs in Biomedical Imaging 95
4.5.2 Graphene in Biomedical Imaging 95
4.6 Conclusions 97 References 97
Part III Nanotechnology-Based Approaches in Biomaterials Fabrications 105 5 Molecular Self-Assembly for Nanobiomaterial Fabrication 107 Ling Zhu, Yanlian Yang, and ChenWang
5.1 Introduction 107
5.1.1 Molecular Self-Assembly 107
5.1.2 Nanoscale Interactions andTheir Roles in Self-Assembly 107
5.1.3 Technologies for the Characterization of Self-Assemblies 108
5.1.3.1 Microscopies 108
5.1.3.2 Dynamic Light Scattering 110
5.1.3.3 Spectroscopies 110
5.2 Self-Assembling Peptides 111
5.2.1 Peptide Self-Assembly and Its Applications 111
5.2.2 Driving Force for Peptide Self-Assembly 112
5.2.3 Secondary Structures of Peptide Self-Assemblies 112
5.2.3.1 ;;-Sheet-Forming Peptides 112
5.2.3.2 Coiled-Coil Peptides 114
5.2.3.3 Collagen-like Triple-Helical Peptides 114
5.2.3.4 Secondary Structure Transition Peptides 115
5.2.4 Peptide Nanostructures 115
5.2.4.1 Nanofibers and Hydrogel 115
5.2.4.2 Peptide Nanotubes 116
5.2.4.3 Vesicle/Spherical Structures from Surfactant Peptides 118
5.3 Nano-Drug Carriers 118
5.3.1 Liposomes 119
5.3.2 Polymeric Drug Carriers 121
5.3.2.1 Poly Lactic-co-Glycolic Acid (PLGA) Nanoparticles 121
5.3.2.2 PEGylation 121
5.3.2.3 Polymeric Micelles 122
5.3.3 Drug Delivery Strategies: Passive Targeting versus Active Targeting 123
5.3.4 Triggered Drug Release 123
5.3.5 Other Applications of Nano-Drug Carriers 124
5.4 Inorganic Nanobiomaterials 124
5.4.1 Graphene 124
5.4.2 Carbon Nanotubes 125
5.4.3 Surface Functionalization of Carbon Nanomaterials for Biomedical Application 126
5.4.3.1 Surface Functionalization of Graphene 126
5.4.3.2 Graphene-Peptide Hybrids 126
5.4.3.3 Layer-by-Layer Assembly of Graphene Films 127
5.4.3.4 Application of Functionalized Graphene 127
5.4.3.5 Surface Functionalization of Carbon Nanotubes 128
5.4.3.6 Application of Functionalized Carbon Nanotubes 128
5.5 Perspectives 129 Acknowledgments 129 References 129 6 Electrospraying and Electrospinning for Nanobiomaterial Fabrication 143 Liumin He, Yuyuan Zhao, Lingling Tian, and Seeram Ramakrishna
6.1 Introduction 143
6.2 What is Electrospinning? 143
6.2.1 The Electrospinning Process 144
6.2.2 The Electrospinning Device 144
6.2.3 Advances in Electrospinning Devices 146
6.2.3.1 Advances in the Collector 146
6.2.3.2 Advances in the Spinneret 146
6.3 Key Considerations in Electrospinning 146
6.3.1 The Spinnable Materials 146
6.3.1.1 Biopolymers 147
6.3.1.2 Water-Soluble Polymers 147
6.3.1.3 Organosoluble Polymers 147
6.3.1.4 Biodegradable Polymers 147
6.3.1.5 Copolymers 148
6.3.1.6 Melt-Electrospinnable Polymers 148
6.3.2 Parameters in Electrospinning 148
6.3.2.1 Solution Properties 148
6.3.2.2 Process Parameters 150
6.3.2.3 Ambient Parameters 151
6.3.2.4 Conclusion 151
6.4 The Application of Electrospun Materials in Biomedicine 151
6.4.1 Tissue Engineering Applications 151
6.4.1.1 Vascular Tissue Engineering 152
6.4.1.2 Bone Tissue Engineering 152
6.4.1.3 Nerve Tissue Engineering 153
6.4.1.4 Skin Tissue Engineering 154
6.4.1.5 Tendon and Ligament Tissue Engineering 155
6.4.2 Transport and Release of Drugs 156
6.4.3 Wound Dressing 157
6.5 Future Directions 159 References 159 7 Layer-by-Layer Technique: From Capsule Assembly to Application in Biological Domains 165 Xi Chen
7.1 Definition of Layer-by-Layer (LbL) Assembly 165
7.2 Stabilizing Interactions between LbL Films 166
7.2.1 LbL Assembly via Electrostatic Bonding 167
7.2.2 LbL Assembly via Hydrogen Bonding 168
7.2.3 LbL Assembly via Covalent Bonding 168
7.3 Emerged Technologies Employed for LbL Assembly 169
7.3.1 Immersive LbL Assembly 169
7.3.2 Spin LbL Assembly 169
7.3.3 Spray LbL Assembly 171
7.3.4 Electric and Magnetic LbL Assembly 171
7.3.5 Fluidic LbL Assembly 172
7.4 TypicalMethods for the Assembly of LbL Particles/Capsules 172
7.4.1 Centrifugation 172
7.4.2 Microfluidics 174
7.4.3 Electrophoresis 174
7.5 Application of LbL Capsules in Biological Environment 174
7.5.1 Therapeutic Delivery 174
7.5.2 Biosensors and Bioreactors 175
7.6 LbL Capsules as aTherapeutic Delivery Platform: Cargo Loading and Release 176
7.6.1 Cargo Loading 176
7.6.1.1 Pre-loading 176
7.6.1.2 Post-loading 176
7.6.1.3 Loading Cargo on Capsule Shells 176
7.6.2 Biological Stimuli-Responsive Cargo Release 177
7.6.2.1 Enzyme 177
7.6.2.2 pH 178
7.6.2.3 Redox 178
7.7 The Effect of Physicochemical Properties of LbL Capsules on Cellular Interactions 179
7.7.1 Morphology Effects 179
7.7.2 Surface Property Effects 180
7.7.3 Mechanical Effects 181
7.8 Conclusion and Outlook 182 References 182 8 Nanopatterning Techniques 189 Lakshmi Priya Manickam, Akshay Bhatt, Deepti Rana, Serge Ostrovidov, Renu Pasricha, XiumeiWang, andMurugan Ramalingam
8.1 Introduction 189
8.2 Types of Nanopatterning Techniques 190
8.3 Na
De oplyste priser er inkl. moms

Senest sete

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.