
1

Pr e-Requ i s ite
Intro d u cti o n

(Don’t skip this, you’re going to need it.)

I presume you just picked up this book because you are a computer
programmer and are intrigued by the notion of professionalism. You should be.
Professionalism is something that our profession is in dire need of.

I’m a programmer too. I’ve been a programmer for 421 years; and in that time—
let me tell you—I’ve seen it all. I’ve been fired. I’ve been lauded. I’ve been a
team leader, a manager, a grunt, and even a CEO. I’ve worked with brilliant

1.	 Don’t Panic.

Martin_Introduction.indd 1 4/20/11 8:19 PM

2

Pre-Requisite Introduction

programmers and I’ve worked with slugs.2 I’ve worked on high-tech cutting-
edge embedded software/hardware systems, and I’ve worked on corporate
payroll systems. I’ve programmed in COBOL, FORTRAN, BAL, PDP-8, PDP-11,
C, C++, Java, Ruby, Smalltalk, and a plethora of other languages and systems.
I’ve worked with untrustworthy paycheck thieves, and I’ve worked with
consummate professionals. It is that last classification that is the topic of this
book.

In the pages of this book I will try to define what it means to be a professional
programmer. I will describe the attitudes, disciplines, and actions that I consider
to be essentially professional.

How do I know what these attitudes, disciplines, and actions are? Because I had
to learn them the hard way. You see, when I got my first job as a programmer,
professional was the last word you’d have used to describe me.

The year was 1969. I was 17. My father had badgered a local business named
ASC into hiring me as a temporary part-time programmer. (Yes, my father
could do things like that. I once watched him walk out in front of a speeding
car with his hand out commanding it to “Stop!” The car stopped. Nobody said
“no” to my Dad.) The company put me to work in the room where all the IBM
computer manuals were kept. They had me put years and years of updates into
the manuals. It was here that I first saw the phrase: “This page intentionally left
blank.”

After a couple of days of updating manuals, my supervisor asked me to write a
simple Easycoder3 program. I was thrilled to be asked. I’d never written a
program for a real computer before. I had, however, inhaled the Autocoder
books, and had a vague notion of how to begin.

The program was simply to read records from a tape, and replace the IDs of
those records with new IDs. The new IDs started at 1 and were incremented by

2.	 A technical term of unknown origins.

3.	Easycoder was the assembler for the Honeywell H200 computer, which was similar to

Autocoder for the IBM 1401 computer.

Martin_Introduction.indd 2 4/20/11 8:19 PM

3

Pre-Requisite Introduction

1 for each new record. The records with the new IDs were to be written to a
new tape.

My supervisor showed me a shelf that held many stacks of red and blue
punched cards. Imagine that you bought 50 decks of playing cards, 25 red
decks, and 25 blue decks. Then you stacked those decks one on top of the other.
That’s what these stacks of cards looked like. They were striped red and blue,
and the stripes were about 200 cards each. Each one of those stripes contained
the source code for the subroutine library that the programmers typically used.
Programmers would simply take the top deck off the stack, making sure that
they took nothing but red or blue cards, and then put that at the end of their
program deck.

I wrote my program on some coding forms. Coding forms were large
rectangular sheets of paper divided into 25 lines and 80 columns. Each line
represented one card. You wrote your program on the coding form using block
capital letters and a #2 pencil. In the last 6 columns of each line you wrote a
sequence number with that #2 pencil. Typically you incremented the sequence
number by 10 so that you could insert cards later.

The coding form went to the key punchers. This company had several dozen
women who took coding forms from a big in-basket, and then “typed” them
into key-punch machines. These machines were a lot like typewriters, except
that the characters were punched into cards instead of printed on paper.

The next day the keypunchers returned my program to me by inter-office mail.
My small deck of punched cards was wrapped up by my coding forms and a
rubber band. I looked over the cards for keypunch errors. There weren’t any. So
then I put the subroutine library deck on the end of my program deck, and
then took the deck upstairs to the computer operators.

The computers were behind locked doors in an environmentally controlled
room with a raised floor (for all the cables). I knocked on the door and an
operator austerely took my deck from me and put it into another in-basket
inside the computer room. When they got around to it, they would run my
deck.

Martin_Introduction.indd 3 4/20/11 8:19 PM

4

Pre-Requisite Introduction

The next day I got my deck back. It was wrapped in a listing of the results of the
run and kept together with a rubber band. (We used lots of rubber bands in
those days!)

I opened the listing and saw that my compile had failed. The error messages in
the listing were very difficult for me to understand, so I took it to my
supervisor. He looked it over, mumbled under his breath, made some quick
notes on the listing, grabbed my deck and then told me to follow him.

He took me up to the keypunch room and sat at a vacant keypunch machine.
One by one he corrected the cards that were in error, and added one or two
other cards. He quickly explained what he was doing, but it all went by like a
flash.

He took the new deck up to the computer room and knocked at the door. He
said some magic words to one of the operators, and then walked into the
computer room behind him. He beckoned for me to follow. The operator set up
the tape drives and loaded the deck while we watched. The tapes spun, the
printer chattered, and then it was over. The program had worked.

The next day my supervisor thanked me for my help, and terminated my
employment. Apparently ASC didn’t feel they had the time to nurture a
17-year-old.

But my connection with ASC was hardly over. A few months later I got a full-
time second-shift job at ASC operating off-line printers. These printers printed
junk mail from print images that were stored on tape. My job was to load the
printers with paper, load the tapes into the tape drives, fix paper jams, and
otherwise just watch the machines work.

The year was 1970. College was not an option for me, nor did it hold any
particular enticements. The Viet Nam war was still raging, and the campuses
were chaotic. I had continued to inhale books on COBOL, Fortran, PL/1,
PDP-8, and IBM 360 Assembler. My intent was to bypass school and drive as
hard as I could to get a job programming.

Martin_Introduction.indd 4 4/20/11 8:19 PM

5

Pre-Requisite Introduction

Twelve months later I achieved that goal. I was promoted to a full-time
programmer at ASC. I, and two of my good friends, Richard and Tim, also 19,
worked with a team of three other programmers writing a real-time accounting
system for a teamster’s union. The machine was a Varian 620i. It was a simple
mini-computer similar in architecture to a PDP-8 except that it had a 16-bit
word and two registers. The language was assembler.

We wrote every line of code in that system. And I mean every line. We wrote the
operating system, the interrupt heads, the IO drivers, the file system for the
disks, the overlay swapper, and even the relocatable linker. Not to mention all
the application code. We wrote all this in 8 months working 70 and 80 hours a
week to meet a hellish deadline. My salary was $7,200 per year.

We delivered that system. And then we quit.

We quit suddenly, and with malice. You see, after all that work, and after having
delivered a successful system, the company gave us a 2% raise. We felt cheated
and abused. Several of us got jobs elsewhere and simply resigned.

I, however, took a different, and very unfortunate, approach. I and a buddy
stormed into the boss’ office and quit together rather loudly. This was
emotionally very satisfying—for a day.

The next day it hit me that I did not have a job. I was 19, unemployed, with no
degree. I interviewed for a few programming positions, but those interviews did
not go well. So I worked in my brother-in-law’s lawnmower repair shop for four
months. Unfortunately I was a lousy lawnmower repairman. He eventually had
to let me go. I fell into a nasty funk.

I stayed up till 3 am every night eating pizza and watching old monster movies
on my parents’ old black-and-white, rabbit-ear TV. Only some of the ghosts
where characters in the movies. I stayed in bed till 1 pm because I didn’t want to
face my dreary days. I took a calculus course at a local community college and
failed it. I was a wreck.

Martin_Introduction.indd 5 4/20/11 8:19 PM

6

Pre-Requisite Introduction

My mother took me aside and told me that my life was a mess, and that I had
been an idiot for quitting without having a new job, and for quitting so
emotionally, and for quitting together with my buddy. She told me that you
never quit without having a new job, and you always quit calmly, coolly, and
alone. She told me that I should call my old boss and beg for my old job back.
She said, “You need to eat some humble pie.”

Nineteen-year-old boys are not known for their appetite for humble pie, and I
was no exception. But the circumstances had taken their toll on my pride. In the
end I called my boss and took a big bite of that humble pie. And it worked. He
was happy to re-hire me for $6,800 per year, and I was happy to take it.

I spent another eighteen months working there, watching my Ps and Qs
and trying to be as valuable an employee as I could. I was rewarded with
promotions and raises, and a regular paycheck. Life was good. When I left that
company, it was on good terms, and with an offer for a better job in my pocket.

You might think that I had learned my lesson; that I was now a professional. Far
from it. That was just the first of many lessons I needed to learn. In the coming
years I would be fired from one job for carelessly missing critical dates, and
nearly fired from still another for inadvertently leaking confidential information
to a customer. I would take the lead on a doomed project and ride it into the
ground without calling for the help I knew I needed. I would aggressively
defend my technical decisions even though they flew in the face of the
customers’ needs. I would hire one wholly unqualified person, saddling my
employer with a huge liability to deal with. And worst of all, I would get two
other people fired because of my inability to lead.

So think of this book as a catalog of my own errors, a blotter of my own crimes,
and a set of guidelines for you to avoid walking in my early shoes.

Martin_Introduction.indd 6 4/20/11 8:19 PM

