CONTENTS

CHAPTER 22 THERMO-CHEMICAL DIFFUSION PROCESSES 579

22.1 INTRODUCTION 579

22.2 DIFFUSION PROCESSES 579
 22.2.1 LATTICE DIFFUSION 580
 22.2.2 THE RATE OF DIFFUSION AND DIFFUSION DEPTH 581
 22.2.3 DIFFUSION REMEDY 583

22.3 CARBURIZING (DIFFUSION OF CARBON) 584
 22.3.1 VACUUM CARBURIZING 591

22.4 CARBONITRIDING 591

22.5 NITRIDING 595
 22.5.1 PLASMA NITRIDING 598
 22.5.2 EXPANDED LATTICE S-PHASE 598
 22.5.3 NITROCARBURIZING 600

22.6 BORONIZING (BORIDING) 602
 22.6.1 BORONIZING PROCESSES 603
 22.6.2 INFLUENCE OF THE SUBSTRATE MATERIAL 604
 22.6.3 PROCESS PARAMETERS 605
 22.6.4 PROPERTIES OF BORONIZED COMPONENTS 606

22.7 CHROMIZING 607

22.8 SHERARDIZING 608

22.9 DIFFUSION ANNEALING 609

22.10 THE TOYOTA DIFFUSION PROCESS 612

22.11 INDUCTION HARDENING 614

22.12 RECOMMENDED ADDITIONAL READING 617

22.13 RELEVANT STANDARDS 617

CHAPTER 23 HOT DIP GALVANIZING 621

23.1 INTRODUCTION 621

23.2 REGULAR HOT DIP GALVANIZING 622
 23.2.1 DRY GALVANIZING 622
 23.2.2 WET GALVANIZING 624

23.3 GALVANIZING OF SHEETS 625

23.4 REACTIONS BETWEEN IRON AND ZINC 626

23.5 SIGNIFICANT PROCESS PARAMETERS 627
Table of Contents

Chapter 26 Mechanical Plating

26.1 Introduction .. 689
26.2 The Plating Process .. 690
 26.2.1 Mechanical Plating of Steel 691
26.3 References .. 695
26.4 Recommended Additional Reading 695
26.5 Relevant Standards ... 695

Chapter 27 Introduction to Paint

27.1 Introduction .. 697
 27.1.1 Key Factors for the Successful Use of Paint 700
27.2 The Components of Paint .. 701
 27.2.1 Binders .. 701
 27.2.2 Solvents ... 702
 27.2.3 Pigments ... 704
 27.2.4 Additives ... 742
 27.2.5 Rheology .. 743
27.3 Production of Paint .. 744
27.4 References .. 748
27.5 Recommended Additional Reading 749
27.6 Relevant Standards ... 749

Chapter 28 Classification of Paints

28.1 Introduction .. 751
28.2 Physically Drying Paints ... 753
 28.2.1 Generic Properties of Physically Drying Paints 753
 28.2.2 Tar and Bitumen ... 754
 28.2.3 Chlorinated Rubber ... 756
 28.2.4 Acrylic .. 758
 28.2.5 Vinyl .. 759
 28.2.6 Nitrocellulose .. 761
28.3 Water-Borne Paints .. 763
 28.3.1 Generic Properties of Water-Borne Paints 763
28.4 Chemically Curing Paints ... 766
 28.4.1 Generic Properties of Chemically Curing Paints 766
 28.4.2 Oxidatively Curing Paints 767
 28.4.3 Two-Component Curing Paints 772
 28.4.4 Humidity Curing Paints 779
 28.4.5 Heat Curing Paints ... 783
30.3 WET BLASTING METHODS 846
 30.3.1 WATER CLEANING METHODS (WATER JETTING) 847

30.4 ABRASIVE MEDIA 850

30.5 STANDARDS 854

30.6 EVALUATION OF SURFACE ROUGHNESS 859

30.7 PREPARATION OF METAL SURFACES BEYOND STEEL 860
 30.7.1 ALUMINUM 860
 30.7.2 HOT DIP GALVANIZED STEEL 861
 30.7.3 STAINLESS STEEL 861

30.8 PAINT ADHESION 862
 30.8.1 SURFACE TENSION AND WETTING 862
 30.8.2 ADHESION THEORIES 865

30.9 REFERENCES 867

30.10 RECOMMENDED ADDITIONAL READING 867

30.11 RELEVANT STANDARDS 868

CHAPTER 31 SELECTION OF PAINT SYSTEMS 871

31.1 INTRODUCTION 871

31.2 CORROSION CLASSES 873

31.3 PAINT SYSTEMS FOR CORROSION PROTECTION 875
 31.3.1 CONVERSION COATINGS AS PRETREATMENT 880

31.4 TEST OF ORGANIC COATINGS 886

31.5 PAINT DEFECTS 887

31.6 RELEVANT STANDARDS 888

CHAPTER 32 MEASUREMENT OF »TOTAL VISUAL APPEARANCE« 893

32.1 INTRODUCTION 893

32.2 GLOSS 896
 32.2.1 HAZE 901

32.3 COLOR 902
 32.3.1 COLOR FORMATION 903
 32.3.2 MIXING OF COLORS 905

32.4 REFERENCES 912

32.5 RECOMMENDED ADDITIONAL READING 912

32.6 RELEVANT STANDARDS 912
CHAPTER 33 QC; THICKNESS AND ADHESION OF COATINGS

33.1 INTRODUCTION

33.2 MEASURING THE THICKNESS OF COATINGS
33.2.1 WEIGHT GAIN UPON COATING
33.2.2 MECHANICAL MEASUREMENT
33.2.3 CHEMICAL MEASUREMENT
33.2.4 OPTICAL MEASUREMENT
33.2.5 ELECTROCHEMICAL MEASUREMENT
33.2.6 MAGNETIC MEASUREMENT
33.2.7 MAGNETIC-INDUCTIVE MEASUREMENT
33.2.8 EDDY-CURRENT MEASUREMENT
33.2.9 X-RAY FLUORESCENCE MEASUREMENT
33.2.10 BETA BACKSCATTER MEASUREMENT
33.2.11 ULTRASONIC MEASUREMENT
33.2.12 ELLIPSMETRY
33.2.13 MEASUREMENT BEFORE CURING

33.3 QUANTIFYING COATING ADHESION
33.3.1 BENDING TEST
33.3.2 POLISHING TEST
33.3.3 CHISEL TEST
33.3.4 PULL TEST
33.3.5 FILE TEST
33.3.6 GRIND/SAW TEST
33.3.7 COOLING TEST
33.3.8 IMPACT/STROKE TEST
33.3.9 PEEL TEST
33.3.10 PUSH TEST
33.3.11 SCRIBE/GRID TEST
33.3.12 SCRATCH TESTER
33.3.13 DAIMLER-BENZ TEST

33.4 RELEVANT STANDARDS

CHAPTER 34 MEASURING HARDNESS

34.1 INTRODUCTION

34.2 HARDNESS MEASUREMENT
34.2.1 MODELS FOR CORRELATING INDENTER AREA AND SURFACE HARDNESS

34.3 NANOINDENTATION
Chapter 35 Corrosion Evaluation and Durability Testing

35.1 **Introduction**

35.2 **Corrosion and Durability Testing**
 - 35.2.1 Field Testing/WeAthering
 - 35.2.2 Accelerated Laboratory Testing

35.3 **Additional Reading**

35.4 **Relevant Standards**

Chapter 36 Characterization of Surfaces and Bulk Materials

36.1 **Introduction**

36.2 **The Interaction of Electrons with Matter**

36.3 **The Interaction of Photons with Matter**
 - 36.3.1 The Low Energy Regime
 - 36.3.2 The Intermediate Energy Regime
 - 36.3.3 High Energy Regime

36.4 **Overview of Different Analysis Techniques**

36.5 **Electron Microscopes and Related Techniques**
 - 36.5.1 The Interaction of Electrons with Matter
 - 36.5.2 Electron Wave Dualism
 - 36.5.3 Introduction to SEM/TEM Techniques
 - 36.5.4 Scanning Electron Microscopy
 - 36.5.5 Scanning Confocal Electron Microscopy
 - 36.5.6 Reflection Electron Microscopy
 - 36.5.7 Scanning Transmission Electron Microscopy
 - 36.5.8 Low-Voltage Electron Microscopy
 - 36.5.9 Environmental Scanning Electron Microscopy
 - 36.5.10 Cryogenic-SEM
 - 36.5.11 FIB-SEM
 - 36.5.12 Field Emission Gun Scanning Electron Microscopy
 - 36.5.13 Transmission Electron Microscope

36.6 **Energy-Dispersive X-Ray Spectroscopy**

36.7 **Electron Energy Loss Spectroscopy**

36.8 **X-Ray Photoelectron Spectroscopy**

36.9 **Glow Discharge Optical Emission Spectroscopy**
 - 36.9.1 Basic Principle of Operation
 - 36.9.2 Examples of GDOES Profiles

36.10 **Secondary Ion Mass Spectroscopy**
 - 36.10.1 Time-of-Flight Secondary Ion Mass Spectrometry