Status netop nu:

Vore butikker er lukkede - men onlineshoppen er åben og ordrer vil blive ekspederet som normalt. 

SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models

Poul Thyregod og Henrik Madsen
(2010)
Sprog: Engelsk
CRC Press LLC
555,00 kr.
På lager, Bestil nu og få den leveret
om ca. 2 hverdage
Introduction to General and Generalized Linear Models, 1. udgave

Introduction to General and Generalized Linear Models Vital Source e-bog

Henrik Madsen
(2011)
CRC Press
492,00 kr. 369,00 kr.
Leveres umiddelbart efter køb
Introduction to General and Generalized Linear Models, 1. udgave

Introduction to General and Generalized Linear Models Vital Source e-bog

Henrik Madsen
(2011)
CRC Press
492,00 kr. 369,00 kr.
Leveres umiddelbart efter køb
Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models

Poul Thyregod og Henrik Madsen
(2010)
Sprog: Engelsk
CRC Press LLC
555,00 kr.
På lager, Bestil nu og få den leveret
om ca. 2 hverdage
  • Klik for at bedømme:
  • 0.0/6 (0 bedømmelser)

Detaljer Om Varen

  • Hardback: 316 sider
  • Udgiver: CRC Press LLC (November 2010)
  • Forfattere: Poul Thyregod og Henrik Madsen
  • ISBN: 9781420091557

Bridging the gap between theory and practice for modern statistical model building, Introduction to General and Generalized Linear Models presents likelihood-based techniques for statistical modelling using various types of data. Implementations using R are provided throughout the text, although other software packages are also discussed. Numerous examples show how the problems are solved with R.

After describing the necessary likelihood theory, the book covers both general and generalized linear models using the same likelihood-based methods. It presents the corresponding/parallel results for the general linear models first, since they are easier to understand and often more well known. The authors then explore random effects and mixed effects in a Gaussian context. They also introduce non-Gaussian hierarchical models that are members of the exponential family of distributions. Each chapter contains examples and guidelines for solving the problems via R.

Providing a flexible framework for data analysis and model building, this text focuses on the statistical methods and models that can help predict the expected value of an outcome, dependent, or response variable. It offers a sound introduction to general and generalized linear models using the popular and powerful likelihood techniques. Ancillary materials are available at www.imm.dtu.dk/~hm/GLM

Introduction
Examples of types of data Motivating examples A first view on the models The Likelihood Principle Introduction
Point estimation theory The likelihood function The score function The information matrix Alternative parameterizations of the likelihood The maximum likelihood estimate (MLE) Distribution of the ML estimator Generalized loss-function and deviance Quadratic approximation of the log-likelihood Likelihood ratio tests Successive testing in hypothesis chains Dealing with nuisance parameters General Linear Models Introduction
The multivariate normal distribution General linear models Estimation of parameters Likelihood ratio tests Tests for model reduction Collinearity Inference on parameters in parameterized models Model diagnostics: residuals and influence Analysis of residuals Representation of linear models General linear models in R Generalized Linear Models Types of response variables Exponential families of distributions Generalized linear models Maximum likelihood estimation Likelihood ratio tests Test for model reduction Inference on individual parameters Examples Generalized linear models in R Mixed Effects Models Gaussian mixed effects model One-way random effects model More examples of hierarchical variation General linear mixed effects models Bayesian interpretations Posterior distributions Random effects for multivariate measurements Hierarchical models in metrology General mixed effects models Laplace approximation Mixed effects models in R Hierarchical Models Introduction, approaches to modelling of overdispersion Hierarchical Poisson gamma model Conjugate prior distributions Examples of one-way random effects models Hierarchical generalized linear models Real-Life Inspired Problems Dioxin emission Depreciation of used cars Young fish in the North Sea Traffic accidents Mortality of snails
Appendix A: Supplement on the Law of Error Propagation
Appendix B: Some Probability Distributions
Appendix C: List of Symbols Bibliography
Index Problems appear at the end of each chapter.

Detaljer Om Varen

  • 1. Udgave
  • Vital Source E-book
  • Udgiver: CRC Press (August 2011)
  • ISBN: 9781420091564
Bridging the gap between theory and practice for modern statistical model building, Introduction to General and Generalized Linear Models presents likelihood-based techniques for statistical modelling using various types of data. Implementations using R are provided throughout the text, although other software packages are also discussed. Numerous examples show how the problems are solved with R. After describing the necessary likelihood theory, the book covers both general and generalized linear models using the same likelihood-based methods. It presents the corresponding/parallel results for the general linear models first, since they are easier to understand and often more well known. The authors then explore random effects and mixed effects in a Gaussian context. They also introduce non-Gaussian hierarchical models that are members of the exponential family of distributions. Each chapter contains examples and guidelines for solving the problems via R. Providing a flexible framework for data analysis and model building, this text focuses on the statistical methods and models that can help predict the expected value of an outcome, dependent, or response variable. It offers a sound introduction to general and generalized linear models using the popular and powerful likelihood techniques. Ancillary materials are available at www.imm.dtu.dk/~hm/GLM
Licens varighed:
Online udgaven er tilgængelig: 365 dage fra købsdato.
Offline udgaven er tilgængelig: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 2 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)

Detaljer Om Varen

  • 1. Udgave
  • Vital Source E-book
  • Udgiver: CRC Press (August 2011)
  • ISBN: 9781420091564
Bridging the gap between theory and practice for modern statistical model building, Introduction to General and Generalized Linear Models presents likelihood-based techniques for statistical modelling using various types of data. Implementations using R are provided throughout the text, although other software packages are also discussed. Numerous examples show how the problems are solved with R. After describing the necessary likelihood theory, the book covers both general and generalized linear models using the same likelihood-based methods. It presents the corresponding/parallel results for the general linear models first, since they are easier to understand and often more well known. The authors then explore random effects and mixed effects in a Gaussian context. They also introduce non-Gaussian hierarchical models that are members of the exponential family of distributions. Each chapter contains examples and guidelines for solving the problems via R. Providing a flexible framework for data analysis and model building, this text focuses on the statistical methods and models that can help predict the expected value of an outcome, dependent, or response variable. It offers a sound introduction to general and generalized linear models using the popular and powerful likelihood techniques. Ancillary materials are available at www.imm.dtu.dk/~hm/GLM
Licens varighed:
Online udgaven er tilgængelig: 365 dage fra købsdato.
Offline udgaven er tilgængelig: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 2 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)

Detaljer Om Varen

  • Hardback: 316 sider
  • Udgiver: CRC Press LLC (November 2010)
  • Forfattere: Poul Thyregod og Henrik Madsen
  • ISBN: 9781420091557

Bridging the gap between theory and practice for modern statistical model building, Introduction to General and Generalized Linear Models presents likelihood-based techniques for statistical modelling using various types of data. Implementations using R are provided throughout the text, although other software packages are also discussed. Numerous examples show how the problems are solved with R.

After describing the necessary likelihood theory, the book covers both general and generalized linear models using the same likelihood-based methods. It presents the corresponding/parallel results for the general linear models first, since they are easier to understand and often more well known. The authors then explore random effects and mixed effects in a Gaussian context. They also introduce non-Gaussian hierarchical models that are members of the exponential family of distributions. Each chapter contains examples and guidelines for solving the problems via R.

Providing a flexible framework for data analysis and model building, this text focuses on the statistical methods and models that can help predict the expected value of an outcome, dependent, or response variable. It offers a sound introduction to general and generalized linear models using the popular and powerful likelihood techniques. Ancillary materials are available at www.imm.dtu.dk/~hm/GLM

Introduction
Examples of types of data Motivating examples A first view on the models The Likelihood Principle Introduction
Point estimation theory The likelihood function The score function The information matrix Alternative parameterizations of the likelihood The maximum likelihood estimate (MLE) Distribution of the ML estimator Generalized loss-function and deviance Quadratic approximation of the log-likelihood Likelihood ratio tests Successive testing in hypothesis chains Dealing with nuisance parameters General Linear Models Introduction
The multivariate normal distribution General linear models Estimation of parameters Likelihood ratio tests Tests for model reduction Collinearity Inference on parameters in parameterized models Model diagnostics: residuals and influence Analysis of residuals Representation of linear models General linear models in R Generalized Linear Models Types of response variables Exponential families of distributions Generalized linear models Maximum likelihood estimation Likelihood ratio tests Test for model reduction Inference on individual parameters Examples Generalized linear models in R Mixed Effects Models Gaussian mixed effects model One-way random effects model More examples of hierarchical variation General linear mixed effects models Bayesian interpretations Posterior distributions Random effects for multivariate measurements Hierarchical models in metrology General mixed effects models Laplace approximation Mixed effects models in R Hierarchical Models Introduction, approaches to modelling of overdispersion Hierarchical Poisson gamma model Conjugate prior distributions Examples of one-way random effects models Hierarchical generalized linear models Real-Life Inspired Problems Dioxin emission Depreciation of used cars Young fish in the North Sea Traffic accidents Mortality of snails
Appendix A: Supplement on the Law of Error Propagation
Appendix B: Some Probability Distributions
Appendix C: List of Symbols Bibliography
Index Problems appear at the end of each chapter.
De oplyste priser er inkl. moms
Trustpilot = Fremragende

Om denne ebog

Bemærk: Dette er en Vital Source e-bog, som kan læses offline i Bookshelf ebogslæseren - og online med en browser i en begrænset periode. (Se den enkelte bog for mere information.)

 

Bookshelf læseren findes til forskellige systemer, er gratis og kan downloades her.  

 

For mere information om anskaffelse og brug af Vital Source ebøger, klik her.

Om denne ebog

Bemærk: Dette er en Vital Source e-bog, som kan læses offline i Bookshelf ebogslæseren - og online med en browser i en begrænset periode. (Se den enkelte bog for mere information.)

 

Bookshelf læseren findes til forskellige systemer, er gratis og kan downloades her.  

 

For mere information om anskaffelse og brug af Vital Source ebøger, klik her.

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her

Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Ebog: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 365 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.