SØG - mellem flere end 8 millioner bøger:
Viser: Data Mining: Concepts and Techniques
Data Mining: Concepts and Techniques Vital Source e-bog
Jiawei Han og Micheline Kamber
(2011)
Data Mining: Concepts and Techniques
Jiawei Han, Micheline Kamber og Jian Pei
(2011)
Sprog: Engelsk
Detaljer om varen
- 3. Udgave
- Vital Source searchable e-book (Fixed pages): 744 sider
- Udgiver: Elsevier Science (Juni 2011)
- Forfattere: Jiawei Han og Micheline Kamber
- ISBN: 9780123814807
The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it’s still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge.
Since the previous edition’s publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today’s most powerful data mining techniques to meet real business challenges.
* Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.
Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: -1 sider kan printes ad gangen
Copy: højest -1 sider i alt kan kopieres (copy/paste)
Detaljer om varen
- Hardback: 744 sider
- Udgiver: Elsevier Science & Technology (Juli 2011)
- Forfattere: Jiawei Han, Micheline Kamber og Jian Pei
- ISBN: 9780123814791
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining.
This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining.
6. Mining Frequent Patterns, Associations and Correlations: Concepts and Methods7. Advanced Frequent Pattern Mining8. Classification: Basic Concepts9. Classification: Advanced Methods10. Cluster Analysis: Basic Concepts and Methods11. Cluster Analysis: Advanced Methods12. Outlier Analysis13. Trends and Research Frontiers in Data Mining