SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Atomistic Simulations of Glasses - Fundamentals and Applications

Atomistic Simulations of Glasses - Fundamentals and Applications

Atomistic Simulations of Glasses

Fundamentals and Applications
Jincheng Du og Alastair Cormack
(2022)
Sprog: Engelsk
John Wiley & Sons, Limited
1.932,00 kr.
Denne bog er endnu ikke udgivet. Den forventes Jun 2022.
  • Klik for at bedømme:
  • 0.0/6 (0 bedømmelser)

Detaljer om varen

  • Hardback: 528 sider
  • Udgiver: John Wiley & Sons, Limited (Juni 2022)
  • Forfattere: Jincheng Du og Alastair Cormack
  • ISBN: 9781118939062

This book is the first introduction/reference to the computer simulation of glass
materials, which are growing in their applications such as telephone technology, construction materials, aerospace materials and more.
Written by the leading experts and active practitioners from across the world, this book provides a comprehensive review of the fundamentals and practical applications of atomistic simulations of inorganic glasses. After providing a concise overview of both classical and first principles simulation methods, the second part of the book focuses on practical examples of the application of atomistic simulations in the research of different glass systems: silica, silicate, aluminosilicate, borate, chalcogenide and halide glasses. Up-to-date information will be provided on simulations (both classical and ab initio methods) of these glass systems, and current challenges facing these systems will be discussed. Students and researchers in the fields of materials science, particularly glass science and ceramic engineering, inorganic solid state chemistry, computational materials and materials modeling will benefit from this important new book.

Preface

Part I Fundamentals of Atomistic Simulations
Chapter 1 Classical simulation methods Abstract
1.
1 Introduction
1.
2 Simulation techniques
1.
2.
1 Molecular dynamics (MD)
1.
2.
1.
1 Integrating the equations of motion
1.
2.
1.
2 Thermostats and barostats
1.
2.
2 Monte Carlo (MC) eimulations
1.
2.
2.
1 Kinetic Monte Carlo
1.
2.
2.
2 Reverse Monte Carlo
1.
3 The Born Model
1.
3.
1 Ewald summation
1.
3.
2 Potentials
1.
3.
2.
1 Transferability of potential parameters: Self-consistent sets
1.
3.
2.
2 Ion polarizability
1.
3.
2.
3 Potential models for borates
1.
3.
2.
4 Modelling reactivity: electron transfer
1.
4 Calculation of Observables
1.
4.
1 Atomic structure
1.
4.
2 Hyperdynamics and peridynamics
1.
5 Glass Formation
1.
5.
1 Bulk structures
1.
5.
2 Surfaces and fibers
1.
6 Geometry optimization and property calculations
1.
7 References
Chapter 2 Ab initio simulation of amorphous solids Abstract
2.
1 Introduction
2.
1.
1 Big picture
2.
1.
2 The limits of experiment
2.
1.
3 Synergy between experiment and modeling
2.
1.
4 History of simulations and the need for ab initio methods
2.
1.
5 The difference between ab initio and classical MD
2.
1.
6 Ingredients of DFT
2.
1.
7 What DFT can provide
2.
1.
8 The emerging solution for large systems and long times: Machine Learning
2.
1.
9 A practical aid: Databases
2.
2 Methods to produce models
2.
2.
1 Simulation Paradigm: Melt Quench
2.
2.
2 Information Paradigm
2.
2.
3 Teaching chemistry to RMC: FEAR
2.
2.
4 Gap Sculpting
2.
3 Analyzing the models
2.
3.
1 Structure
2.
3.
2 Electronic Structure
2.
3.
3 Vibrational Properties
2.
4 Conclusion
2.
5 Acknowledgements
2.
6 References
Chapter 3 Reverse Monte Carlo simulations of non-crystalline solids Abstract
3.
1 Introduction
-- why RMC is needed?
3.
2 Reverse Monte Carlo modeling
3.
2.
1. Basic RMC algorithm
3.
2.
2. Information deficiency
3.
2.
3. Preparation of reference structures: hard sphere Monte Carlo
3.
2.
4. Other methods for preparing suitable structural models
3.
3 Topological analyses
3.
3.
1. Ring statistics
3.
3.
2. Cavity analyses
3.
3.
3. Persistent homology analyses
3.
4 Applications
3.
4.
1 Single component liquid and amorphous materials
3.
4.
1.
1 l-Si and a-Si
3.
4.
1.
2 l-P under high pressure and high temperature
3.
4.
2 Oxide glasses
3.
4.
2.
1 SiO2 glass
3.
4.
2.
2 R2O-SiO2 glasses (R=Na, K)
3.
4.
2.
3 CaO-Al2O3 glass
3.
4.
3 Chalcogenide glasses
3.
4.
4 Metallic glasses
3.
5 Summary
3.
6 Acknowledgments
3.
7 References
Chapter 4 Structure analysis and property calculations abstract
4.
1 Introduction
4.
2 Structure Analysis
4.
2.
1 Salient features of glass structures
4.
2.
2 Classification of the range order.
4.
3 Real Space Correlation functions. Spectroscopic properties: validating the structural models
4.
3.
1 X-ray and Neutron diffraction spectra
4.
3.
2 Vibrational spectra
4.
3.
3 NMR spectra
4.
4 Transport properties
4.
4.
1 Diffusion coefficient and diffusion activation energy
4.
4.
2 Viscosity
4.
4.
3 Thermal conductivity
4.
5 Mechanical Properties
4.
5.
1 Elastic constants
4.
5.
2 Stress-strain diagrams and fracture mechanism
4.
6 Concluding remarks
4.
7 References
Chapter 5 Topological constraint theory of glass: counting constraints by molecular dynamics simulations Abstract
5.
1 Introduction
5.
2 Background and topological constraint theory
5.
2.
1 Rigidity of mechanical networks
5.
2.
2 Application to atomic networks
5.
2.
3 Constraint enumeration under mean-field approximation
5.
2.
4 Polytope-based description of glass rigidity
5.
2.
5 Impact of temperature
5.
2.
6 Need for molecular dynamics simulations
5.
3 Counting constraints from molecular dynamics simulations
5.
3.
1 Constraint enumeration based on the relative motion between atoms
5.
3.
2 Computation of the internal stress
5.
3.
3 Computation of the floppy modes
5.
3.
5 Dynamical matrix analysis
5.
4 Conclusions
5.
5 References

Part II Applications of Atomistic Simulations in Glass Research
Chapter 6 History of atomistic simulations of glasses Abstract
6.
1 Introduction
6.
2 Simulation techniques
6.
2.
1 Monte Carlo techniques
6.
2.
2 Molecular dynamics
6.
3 Classical simulations: interatomic potentials
6.
3.
1 Potential models for silica
6.
3.
1.
1 Silica: quantum mechanical simulations
6.
3.
2 Modified silicates and aluminosilicates
6.
3.
3 Borate glasses
6.
3.
3.
1 Borates: quantum mechanical simulations
6.
4 Simulation of surfaces
6.
5 Computer science and engineering
6.
6.
1 Software
6.
6.
2 Hardware
6.
6 References
Chapter 7 Silica and silicate glasses Abstract
7.
1 Introduction
7.
2 Atomistic simulations of silicate glasses: ingredients and critical aspects
7.
3 Characterization and experimental validation of structural and dynamic features of simulated glasses
7.
3.
1 Structural characterizations
7.
3.
2 Dynamic properties of simulated glasses
7.
3.
3 Validation and experimental confirmation of structural and dynamic properties
7.
3.
3.
1 Diffraction methods
7.
3.
3.
2 Nuclear Magnetic Resonance
7.
3.
3.
3 Vibrational spectral characterization
7.
4 MD simulations of silica glasses
7.
5 MD simulations of alkali silicate and alkali earth silicate glasses
7.
5.
1 Local environments and distribution of alkali ions
7.
5.
2 The mixed alkali effect
7.
6 MD simulations of aluminosilicate glasses
7.
7 MD simulations of nanoporous silica and silicate glasses
7.
8 AIMD simulations of silica and silicate glasses
7.
9 Summary and Outlook Acknowledgements References
Chapter 8 Borosilicate and boroaluminosilicate glasses
8.
1 Abstract
8.
2 Introduction
8.
3 Experimental determination and theoretical models of boron N4 values in borosilicate glass
8.
3.
1 Experimental results on boron coordination number
8.
3.
2 Theoretical models in predicting boron N4 value
8.
4 ab initio versus classical MD simulations of borosilicate glasses
8.
5 Empirical potentials for borate and borosilicate glasses
8.
5.
1 Recent development of rigid ion potentials for borosilicate glasses
8.
5.
2 Development of polarizable potentials for borate and borosilicate glasses
8.
6 Evaluation of the potentials
8.
7 Effects of cooling rate and system size on simulated borosilicate glass structures
8.
8 Applications of MD simulations of borosilicate glasses
8.
8.
1 Borosilicate glass
8.
8.
2 Boroaluminosilicate glasses
8.
8.
3 Boron oxide-containing multi-component glass
8.
9 Conclusions
8.
10 Appendix: Available empirical potentials for boron-containing systems
8.
10.
1 Borosilicate and boroaluminosilicate potentials-Kieu et al and Deng&Du
8.
10.
2 Borosilicate potential- Wang et al
8.
10.
3 Borosilicate potential-Inoue et al
8.
10.
4 Boroaluminosilicate potential-Ha and Garofalini
8.
10.
5 Borosilicate and boron-containing oxide glass potential-Deng and Du
8.
10.
6 Borate, boroaluminate and borosilicate potential-Sundararaman et al
8.
10.
7 Borate and borosilicate polarizable potential-Yu et al
8.
10 Acknowledgements
8.
11 References
Chapter 9 Nuclear waste glasses
9.
1 Preamble
9.
2 Introduction to French nuclear glass
9.
2.
1 Chemical composition
9.
2.
2 About the long term behavior (irradiation, glass alteration, He accumulation)
9.
2.
3 What can atomistic simulations contribute?
9.
3 Computational methodology
9.
3.
1 Review of existing classical potentials for borosilicate glasses
9.
3.
2 Preparation of a glass
9.
3.
3 Displacement cascade simulations
9.
3.
4 Short bibliography about simplified nuclear glass structure studies
9.
4 Simulation of radiation effects in simplified nuclear glasses
9.
4.
1 Accumulation of displacement cascades and the thermal quench model
9.
4.
2 Preparation of disordered and depolymerized glasses
9.
4.
3 Origin of the hardness change under irradiation
9.
4.
4 Origin of the fracture toughness change under irradiation
9.
5 Simulation of glass alteration by water
9.
5.
1 Contribution from ab initio calculations
9.
5.
2 Contribution from Monte Carlo simulations
9.
6 Gas incorporation: radiation effects on He solubility
9.
6.
1 Solubility model
9.
6.
2 Interstitial sites in SiO2-B2O3-Na2O glasses
9.
6.
3 Discussion about He solubility in relation to the radiation effects
9.
7 Conclusions
9.
8 Acknowledgements
9.
9 References
Chapter 10 Phosphate glasses Abstract
10.
1 Introduction to phosphate glasses
10.
1.
1 Applications of phosphate glasses
10.
1.
2 Synthesis of phosphate glasses
10.
1.
3 The modified random network model applied to phosphate glasses
10.
1.
4 The tetrahedral phosphate glass network
10.
1.
5 Modifier cations in phosphate glasses
10.
2 Modelling methods for phosphate glasses
10.
2.
1 Configurations of atomic coordinates
10.
2.
2 Molecular modelling versus reverse Monte Carlo modelling
10.
2.
3 Classical vs. ab initio molecular modelling
10.
2
De oplyste priser er inkl. moms

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.