SØG - mellem flere end 8 millioner bøger:
Viser: Applied Predictive Modeling
Applied Predictive Modeling Vital Source e-bog
Max Kuhn og Kjell Johnson
(2013)
Applied Predictive Modeling Vital Source e-bog
Max Kuhn og Kjell Johnson
(2013)
Applied Predictive Modeling Vital Source e-bog
Max Kuhn og Kjell Johnson
(2013)
Applied Predictive Modeling
Max Kuhn og Kjell Johnson
(2013)
Sprog: Engelsk
om ca. 15 hverdage
Detaljer om varen
- Vital Source searchable e-book (Fixed pages)
- Udgiver: Springer Nature (Maj 2013)
- Forfattere: Max Kuhn og Kjell Johnson
- ISBN: 9781461468493
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.
Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: -1 sider kan printes ad gangen
Copy: højest -1 sider i alt kan kopieres (copy/paste)
Detaljer om varen
- Vital Source 180 day rentals (fixed pages)
- Udgiver: Springer Nature (Maj 2013)
- Forfattere: Max Kuhn og Kjell Johnson
- ISBN: 9781461468493R180
Bookshelf online: 180 dage fra købsdato.
Bookshelf appen: 180 dage fra købsdato.
Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: -1 sider kan printes ad gangen
Copy: højest -1 sider i alt kan kopieres (copy/paste)
Detaljer om varen
- Vital Source 365 day rentals (fixed pages)
- Udgiver: Springer Nature (Maj 2013)
- Forfattere: Max Kuhn og Kjell Johnson
- ISBN: 9781461468493R365
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: 5 år fra købsdato.
Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: -1 sider kan printes ad gangen
Copy: højest -1 sider i alt kan kopieres (copy/paste)
Detaljer om varen
- 1. Udgave
- Hardback: 620 sider
- Udgiver: Springer New York (Maj 2013)
- Forfattere: Max Kuhn og Kjell Johnson
- ISBN: 9781461468486
Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process.
This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner's reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book's R package.This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.