SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: An Introduction to Statistical Learning - With Applications in R

An Introduction to Statistical Learning, 2. udgave
Søgbar e-bog

An Introduction to Statistical Learning Vital Source e-bog

Gareth James, Daniela Witten, Trevor Hastie og Robert Tibshirani
(2021)
Springer Nature
589,00 kr. 530,10 kr.
Leveres umiddelbart efter køb
An Introduction to Statistical Learning, 2. udgave

An Introduction to Statistical Learning Vital Source e-bog

Gareth James, Daniela Witten, Trevor Hastie og Robert Tibshirani
(2021)
Springer Nature
382,00 kr. 343,80 kr.
Leveres umiddelbart efter køb
An Introduction to Statistical Learning, 2. udgave

An Introduction to Statistical Learning Vital Source e-bog

Gareth James, Daniela Witten, Trevor Hastie og Robert Tibshirani
(2021)
Springer Nature
294,00 kr. 264,60 kr.
Leveres umiddelbart efter køb
An Introduction to Statistical Learning - With Applications in R, 2. udgave

An Introduction to Statistical Learning

With Applications in R
Gareth James, Daniela Witten, Trevor Hastie og Robert Tibshirani
(2021)
Sprog: Engelsk
Springer
499,00 kr. 449,10 kr.
Print on demand. Leveringstid vil være ca 2-3 uger.

Detaljer om varen

  • 2. Udgave
  • Vital Source searchable e-book (Fixed pages)
  • Udgiver: Springer Nature (Juli 2021)
  • Forfattere: Gareth James, Daniela Witten, Trevor Hastie og Robert Tibshirani
  • ISBN: 9781071614181
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naïve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.
Licens varighed:
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: -1 sider kan printes ad gangen
Copy: højest -1 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • 2. Udgave
  • Vital Source 180 day rentals (fixed pages)
  • Udgiver: Springer Nature (Juli 2021)
  • Forfattere: Gareth James, Daniela Witten, Trevor Hastie og Robert Tibshirani
  • ISBN: 9781071614181R180
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naïve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.
Licens varighed:
Bookshelf online: 180 dage fra købsdato.
Bookshelf appen: 180 dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: -1 sider kan printes ad gangen
Copy: højest -1 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • 2. Udgave
  • Vital Source 90 day rentals (fixed pages)
  • Udgiver: Springer Nature (Juli 2021)
  • Forfattere: Gareth James, Daniela Witten, Trevor Hastie og Robert Tibshirani
  • ISBN: 9781071614181R90
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naïve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.
Licens varighed:
Bookshelf online: 90 dage fra købsdato.
Bookshelf appen: 90 dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: -1 sider kan printes ad gangen
Copy: højest -1 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • 2. Udgave
  • Hardback
  • Udgiver: Springer (Juli 2021)
  • Forfattere: Gareth James, Daniela Witten, Trevor Hastie og Robert Tibshirani
  • ISBN: 9781071614174

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.

Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naïve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.

Preface.- 1 Introduction.- 2 Statistical Learning.- 3 Linear Regression.- 4 Classification.- 5 Resampling Methods.- 6 Linear Model Selection and Regularization.- 7 Moving Beyond Linearity.- 8 Tree-Based Methods.- 9 Support Vector Machines.- 10 Deep Learning.- 11 Survival Analysis and Censored Data.- 12 Unsupervised Learning.- 13 Multiple Testing.- Index.
De oplyste priser er inkl. moms

Andre har også købt:

Business Marketing Management - B2b, 13. udgave
Business Marketing Ma...
Af Michael D. Hutt,...
Pris: 799,00 .kr
Rabatpris: 719,10 kr.
Digital Marketing, 8. udgave
Digital Marketing
Af Dave Chaffey og ...
Pris: 698,00 kr.
Research Methods for Business Students, 9. udgave
Research Methods for ...
Af Mark Saunders, P...
Pris: 678,00 .kr
Rabatpris: 610,20 kr.
Exploring Strategy, Text and Cases, 13. udgave
Exploring Strategy, T...
Af Richard Whitting...
Pris: 799,00 .kr
Rabatpris: 719,10 kr.
Operations Management: Sustainability and Supply Chain Management, Global Edition + Mylab Operations Management with Pearson EText (Package), 14. udgave
Operations Management...
Af Jay Heizer, Barr...
Pris: 898,00 .kr
Rabatpris: 808,20 kr.

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.