SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Iridium(III) in Optoelectronic and Photonics Applications, 2 Volume Set

Iridium(III) in Optoelectronic and Photonics Applications, 1. udgave
Søgbar e-bog

Iridium(III) in Optoelectronic and Photonics Applications Vital Source e-bog

Eli Zysman-Colman
(2017)
John Wiley & Sons
3.253,00 kr.
Leveres umiddelbart efter køb
Iridium(III) in Optoelectronic and Photonics Applications, 2 Volume Set

Iridium(III) in Optoelectronic and Photonics Applications, 2 Volume Set

Eli Zysman-Colman
(2017)
Sprog: Engelsk
John Wiley & Sons, Limited
3.569,00 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 10 hverdage

Detaljer om varen

  • 1. Udgave
  • Vital Source searchable e-book (Reflowable pages)
  • Udgiver: John Wiley & Sons (Marts 2017)
  • ISBN: 9781119007159
The fundamental photophysical properties of iridium(III) materials make this class of materials the pre-eminent transition metal complex for use in optoelectronic applications. Iridium(III) in Optoelectronic and Photonics Applications represents the definitive account of photoactive iridium complexes and their use across a wide variety of applications.  This two-volume set begins with an overview of the synthesis of these complexes and discusses their photophysical properties. The text highlights not only mononuclear complexes but also the properties of multinuclear and polymeric iridium-based materials and the assembly of iridium complexes into larger supramolecular architectures such as MOFs and soft materials. Chapters devoted to the use of these iridium-based materials in diverse optoelectronic applications follow, including: electroluminescent devices such as organic light emitting diodes (OLEDs) and light-emitting electrochemical cells (LEECs); electrochemiluminescence (ECL); bioimaging; sensing; light harvesting in the context of solar cell applications; in photoredox catalysis and as components for solar fuels. Although primarily targeting a chemistry audience, the wide applicability of these compounds transcends traditional disciplines, making this text also of use to physicists, materials scientists or biologists who have interests in these areas.
Licens varighed:
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 10 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • Hardback: 736 sider
  • Udgiver: John Wiley & Sons, Limited (Maj 2017)
  • ISBN: 9781119007135

The fundamental photophysical properties of iridium(III) materials make this class of materials the pre-eminent transition metal complex for use in optoelectronic applications.

Iridium(III) in Optoelectronic and Photonics Applications represents the definitive account of photoactive iridium complexes and their use across a wide variety of applications.  This two-volume set begins with an overview of the synthesis of these complexes and discusses their photophysical properties. The text highlights not only mononuclear complexes but also the properties of multinuclear and polymeric iridium-based materials and the assembly of iridium complexes into larger supramolecular architectures such as MOFs and soft materials. Chapters devoted to the use of these iridium-based materials in diverse optoelectronic applications follow, including: electroluminescent devices such as organic light emitting diodes (OLEDs) and light-emitting electrochemical cells (LEECs); electrochemiluminescence (ECL); bioimaging; sensing; light harvesting in the context of solar cell applications; in photoredox catalysis and as components for solar fuels.

Although primarily targeting a chemistry audience, the wide applicability of these compounds transcends traditional disciplines, making this text also of use to physicists, materials scientists or biologists who have interests in these areas.

List of Contributors xv Foreword xvii Preface xix VOLUME 1 1 Archetypal Iridium(III) Compounds for Optoelectronic and Photonic Applications: Photophysical Properties and Synthetic Methods 1 Joseph C. Deaton and Felix N. Castellano
1.1 Introduction 1
1.2 Iridium Complex Ion Dopants in Silver Halide Photographic Materials 1
1.3 Overview of the Photophysical Properties of C^N and C^C: Cyclometalated Ir(III) Complexes 2
1.4 Importance of IrC Bonds in the Archetypal Ir(III) Complexes for Optoelectronic and Photonic Applications 9
1.5 Tuning Emission Color 14
1.6 Absorbance and Photoluminescence of C^N Cyclometalated Ir(III) Complexes 17
1.7 SOC Mechanism: Radiative Decay Rates and ZFS 23
1.8 Non-Radiative Decay Rates 39
1.9 Synthetic Methods Targeting C^N Cyclometalated Ir(III) Compounds 42
1.10 Synthetic Methods for Cyclometalated Ir(III) Compounds Containing Carbenes 47
1.11 Conclusions 48 Acknowledgements 49 Abbreviations for Ligands in Ir(III) Complexes 49 References 50 2 Multinuclear Iridium Complexes 71 J. A. Gareth Williams
2.1 Introduction 71
2.2 Compounds Incorporating ''Single Atom Bridges'': μ-Chloro, μ-Oxo and μ-Aza 72
2.2.1 μ-Chloro-Bridged Complexes 72
2.2.2 μ-Aza-Bridged Complexes 74
2.2.3 μ-Hydroxo-Bridged Complexes 76
2.3 Polyatomic Acyclic Bridges: Acetylides, Cyanides and Hydrazides 78
2.4 Compounds with Heterocyclic Bridges 82
2.4.1 Bis-(N^N)-Coordinating Ligands and Related Systems Incorporating At Least One N^N Unit 83
2.4.2 Bis-(N^C)-Coordinating Ligands 89
2.5 Multinuclear Complexes Featuring Conjugated Bridges between Iridium-Bound Polypyridyl or Arylpyridyl Ligands 93
2.5.1 Systems Incorporating Câ?¡C or N=N Bridges with One or More [Ir(N^C)2(N^N)]+ Units 95
2.5.2 Multinuclear Complexes Incorporating Phenyl and Polyphenylene Bridges between the Ligands: ''Supramolecular Assemblies'' 96
2.6 Concluding Remarks 104 Acknowledgements 104 References 104 3 Soft Materials and Soft Salts Based on Iridium Complexes 111 Etienne Baranoff and Yafei Wang
3.1 Introduction 111
3.2 Liquid Crystals 112
3.3 Gels 115
3.4 Micelles 116
3.5 Langmuir-Blodgett Films 118
3.6 Soft Salts 118
3.7 Conclusion 123 Acknowledgements 123 References 123 4 Porous Materials Based on Precious Metal Building Blocks for Solar Energy Applications 127 Daniel Micheroni and Wenbin Lin
4.1 Introduction 127
4.2 The Luminescent Nature of MOFs and Their Use in Chemical Applications 129
4.3 Energy Transfer in Porous Materials 134
4.4 Porous Materials for Water Oxidation 136
4.5 Porous Materials for Proton Reduction 138
4.6 Porous Materials for CO2 Reduction 140
4.7 Conclusions and Outlook 141 References 141 5 Polymeric Architectures Containing Phosphorescent Iridium(III) Complexes 145 Andreas Winter and Ulrich S. Schubert
5.1 Introduction 145
5.2 Ir(III)-Containing Polymers: Classification, Design Principles, and Syntheses 146
5.2.1 Classification of Ir(III)-Containing Polymers 146
5.2.2 Design Principles for Metal-Containing Polymers 147
5.2.2.1 Decoration of Preformed Polymers with Ir(III) Complexes 149
5.2.2.2 Coordination of Ir(III) Precursor Complexes to Preformed Polymers 151
5.2.2.3 (Co)Polymerization of Ir(III)-Containing Monomers 157
5.2.2.4 Electropolymerization of Ir(III)-Containing Complexes 182
5.2.2.5 Synthetic Approaches Toward Ir(III)-Containing Polymers: The Roads Not Taken 186
5.3 Hyperbranched and Dendritic Architectures 187
5.3.1 Ir(III)-Containing Hyperbranched Polymers 187
5.3.2 Ir(III)-Containing Dendritic Systems 188
5.4 Concluding Remarks 191 References 192 6 Iridium(III) Complexes for OLED Application 205 Elena Longhi and Luisa De Cola
6.1 Introduction 205
6.2 Iridium Complexes 206
6.2.1 General Synthesis of Ir(III) Complexes 207
6.2.2 Luminescence of Iridium(III) Complexes 208
6.2.3 Emission Color Tuning in Iridium(III) Complexes 209
6.2.3.1 Influence of the (C^N) Ligand 210
6.2.3.2 Influence of the Ancillary Ligand 212
6.3 Organic Light-Emitting Diodes 216
6.3.1 Device Architecture and Fabrication 217
6.3.2 Device Lifetime 218
6.3.3 Device Efficiency 220
6.3.4 Phosphorescent Materials 221
6.3.5 Host Materials 222
6.4 Iridium(III) Complexes for PHOLED Application 227
6.4.1 Green Emitters 227
6.4.1.1 Role of the Ancillary Ligand 228
6.4.1.2 Modification of the Phenylpyridine Ring 229
6.4.1.3 Use of Different Tris-cyclometalated Motifs 230
6.4.2 Red Emitters 232
6.4.3 Blue Emitters 238
6.5 Conclusions and Perspectives 262 References 262 7 A Comprehensive Review of Luminescent Iridium Complexes Used in Light-Emitting Electrochemical Cells (LEECs) 275 Adam F. Henwood and Eli Zysman-Colman
7.1 Introduction 275
7.2 Device Fundamentals 278
7.3 Green Emitters 280
7.3.1 Archetypal Emitters 282
7.3.2 Pyrazoles 289
7.3.3 Imidazoles 292
7.3.4 Triazoles and Tetrazoles 293
7.3.5 Oxadiazoles 294
7.3.6 Thiophenes 296
7.3.7 Intramolecular Ï?-Stacked Emitters 296
7.3.8 Supramolecular Emitters 300
7.4 Blue Emitters 301
7.4.1 [Ir(ppy)2(bpy)]+-Type Emitters 302
7.4.2 Pyrazoles 307
7.4.3 Imidazoles 312
7.4.4 Triazoles 313
7.4.5 Oxadiazoles 316
7.4.6 N-Heterocyclic Carbenes 320
7.4.7 Phosphines 322
7.5 Yellow Emitters 323
7.5.1 [Ir(ppy)2(bpy)]+-Type Emitters 324
7.5.2 Imidazole Emitters 327
7.5.3 Anionic Emitters 328
7.5.4 Intramolecularly Ï?-Stacked Emitters 328
7.5.5 Multifunctional or Supramolecular Emitters 332
7.6 Orange-Red Emitters 334
7.6.1 [Ir(ppy)2(bpy)]+-Type Emitters 335
7.6.2 Emitters Bearing Five-Membered Heterocyclic Rings 340
7.6.3 Intramolecular Ï?-Stacked Emitters 341
7.6.4 Multifunctional Emitters 345
7.7 Conclusions and Outlook 348 Acknowledgements 349 References 349 VOLUME 2 8 Electrochemiluminescence of Iridium Complexes 359 Sarah E. Laird and Conor F. Hogan
8.1 Background and Overview of Electrochemiluminescence 359
8.1.1 ECL from Metal Complexes 362
8.2 Iridium ECL 363
8.2.1 First Examples 363
8.2.2 Renewed Interest in Iridium ECL Stimulated by Progress in the Field of Light-Emitting Devices 364
8.2.3 Early Advances in Theoretical Understanding and Electrochemiluminophore Design 366
8.2.4 Modified Electrode Systems 370
8.2.5 ECL-Based Sensing Strategies 372
8.2.6 Issues Related to ECL of Iridium Complexes in Aqueous Media and Quenching by Oxygen 384
8.2.7 Tuning ECL Emission Colour and Redox Properties 386
8.2.8 Potential-Resolved Multicolour ECL 399
8.2.8.1 Miscellaneous ECL Systems Involving Iridium Complexes 405
8.2.9 Conclusion and Future Prospects 406 List of Ligand Abbreviations Used in Text 406 References 407 9 Strategic Applications of Luminescent Iridium(III) Complexes as Biomolecular Probes, Cellular Imaging Reagents, and Photodynamic Therapeutics 415 Karson Ka-Shun Tso and Kenneth Kam-Wing Lo
9.1 Introduction 415
9.2 General Cellular Staining Reagents 416
9.3 Hypoxia Sensing Probes 423
9.4 Molecular and Ion Intracellular Probes 427
9.4.1 Intracellular Probes for Sulfur-Containing Species 427
9.4.2 Intracellular Probes for Metal Ions 433
9.4.3 Intracellular Probes for Hypochlorous Acid and Hypochlorite 437
9.4.4 Intracellular Probes for Nitric Oxide 439
9.5 Organelle-Targeting Bioimaging Reagents 441
9.5.1 Nucleus 441
9.5.2 Nucleoli 443
9.5.3 Golgi Apparatus 445
9.5.4 Mitochondria 447
9.6 Functionalized Polypeptides for Bioimaging 450
9.7 Polymers and Nanoparticles for Bioimaging 454
9.8 Photocytotoxic Reagents and Photodynamic Therapeutics 458
9.9 Conclusion 466 Acknowledgements 466 Abbreviations 466 References 469 10 Iridium Complexes in the Development of Optical Sensors 479 Teresa Ramón-Márquez, Marta Marín-Suárez, Alberto Fernández-Gutiérrez and J. F. Fernández-Sánchez
10.1 Generalities of Optical Sensors 479
10.2 Ir(III) Used as Optical Probes 481
10.2.1 Optical Probes for the Detection of Gaseous Species 481
10.2.1.1 Oxygen 482
10.2.1.2 Other Gaseous Species 483
10.2.2 Optical Probes for the Detection of Ionic Species 485
10.2.2.1 Cations 485
10.2.2.2 pH 491
10.2.2.3 Anions 493
10.2.3 Optical Probes for the Detection of Biomolecules 498
10.2.3.1 Amino Acids and Proteins 498
10.2.3.2 Nucleotides and Nucleic Acids 506
10.2.4 Optical Probes for the Detection of Other Small Molecules 506
10.2.4.1 Explosives 506
10.2.4.2 Free Radicals 507
10.2.4.3 H2O2 508
10.2.4.4 Amines 508
10.2.4.5 Silver Salts 508
10.2.4.6 Hypochlorous Acid (HOCl) 508
10.3 Ir(III) Used in the Development of Sensing Phases 509
10.3.1 Sensing Phases for the Detection of Gases 509
10.3.1.1 Oxygen 509
10.3.1.2 Others Gases 516
10.3.2 Sensing Phases for the Detection of Ions 516
10.3.3 Sensing
De oplyste priser er inkl. moms

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.