SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Exascale Scientific Applications - Scalability and Performance Portability

Exascale Scientific Applications, 1. udgave
Søgbar e-bog

Exascale Scientific Applications Vital Source e-bog

Tjerk P. Straatsma
(2017)
Taylor & Francis
572,00 kr.
Leveres umiddelbart efter køb
Exascale Scientific Applications - Scalability and Performance Portability

Exascale Scientific Applications

Scalability and Performance Portability
Tjerk P. Straatsma, Timothy J. Williams og Katerina B. Antypas
(2017)
Sprog: Engelsk
CRC Press LLC
1.670,00 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 10 hverdage

Detaljer om varen

  • 1. Udgave
  • Vital Source searchable e-book (Reflowable pages)
  • Udgiver: Taylor & Francis (November 2017)
  • ISBN: 9781351999236
From the Foreword: "The authors of the chapters in this book are the pioneers who will explore the exascale frontier. The path forward will not be easy... These authors, along with their colleagues who will produce these powerful computer systems will, with dedication and determination, overcome the scalability problem, discover the new algorithms needed to achieve exascale performance for the broad range of applications that they represent, and create the new tools needed to support the development of scalable and portable science and engineering applications. Although the focus is on exascale computers, the benefits will permeate all of science and engineering because the technologies developed for the exascale computers of tomorrow will also power the petascale servers and terascale workstations of tomorrow. These affordable computing capabilities will empower scientists and engineers everywhere." — Thom H. Dunning, Jr., Pacific Northwest National Laboratory and University of Washington, Seattle, Washington, USA "This comprehensive summary of applications targeting Exascale at the three DoE labs is a must read." — Rio Yokota, Tokyo Institute of Technology, Tokyo, Japan "Numerical simulation is now a need in many fields of science, technology, and industry. The complexity of the simulated systems coupled with the massive use of data makes HPC essential to move towards predictive simulations. Advances in computer architecture have so far permitted scientific advances, but at the cost of continually adapting algorithms and applications. The next technological breakthroughs force us to rethink the applications by taking energy consumption into account. These profound modifications require not only anticipation and sharing but also a paradigm shift in application design to ensure the sustainability of developments by guaranteeing a certain independence of the applications to the profound modifications of the architectures: it is the passage from optimal performance to the portability of performance. It is the challenge of this book to demonstrate by example the approach that one can adopt for the development of applications offering performance portability in spite of the profound changes of the computing architectures." — Christophe Calvin, CEA, Fundamental Research Division, Saclay, France "Three editors, one from each of the High Performance Computer Centers at Lawrence Berkeley, Argonne, and Oak Ridge National Laboratories, have compiled a very useful set of chapters aimed at describing software developments for the next generation exa-scale computers. Such a book is needed for scientists and engineers to see where the field is going and how they will be able to exploit such architectures for their own work. The book will also benefit students as it provides insights into how to develop software for such computer architectures. Overall, this book fills an important need in showing how to design and implement algorithms for exa-scale architectures which are heterogeneous and have unique memory systems. The book discusses issues with developing user codes for these architectures and how to address these issues including actual coding examples.’ — Dr. David A. Dixon, Robert Ramsay Chair, The University of Alabama, Tuscaloosa, Alabama, USA
Licens varighed:
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 2 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • Hardback: 582 sider
  • Udgiver: CRC Press LLC (November 2017)
  • Forfattere: Tjerk P. Straatsma, Timothy J. Williams og Katerina B. Antypas
  • ISBN: 9781138197541

From the Foreword:

"The authors of the chapters in this book are the pioneers who will explore the exascale frontier. The path forward will not be easy... These authors, along with their colleagues who will produce these powerful computer systems will, with dedication and determination, overcome the scalability problem, discover the new algorithms needed to achieve exascale performance for the broad range of applications that they represent, and create the new tools needed to support the development of scalable and portable science and engineering applications. Although the focus is on exascale computers, the benefits will permeate all of science and engineering because the technologies developed for the exascale computers of tomorrow will also power the petascale servers and terascale workstations of tomorrow. These affordable computing capabilities will empower scientists and engineers everywhere."
-- Thom H. Dunning, Jr., Pacific Northwest National Laboratory and University of Washington, Seattle, Washington, USA

"This comprehensive summary of applications targeting Exascale at the three DoE labs is a must read."
-- Rio Yokota, Tokyo Institute of Technology, Tokyo, Japan

"Numerical simulation is now a need in many fields of science, technology, and industry. The complexity of the simulated systems coupled with the massive use of data makes HPC essential to move towards predictive simulations. Advances in computer architecture have so far permitted scientific advances, but at the cost of continually adapting algorithms and applications. The next technological breakthroughs force us to rethink the applications by taking energy consumption into account. These profound modifications require not only anticipation and sharing but also a paradigm shift in application design to ensure the sustainability of developments by guaranteeing a certain independence of the applications to the profound modifications of the architectures: it is the passage from optimal performance to the portability of performance. It is the challenge of this book to demonstrate by example the approach that one can adopt for the development of applications offering performance portability in spite of the profound changes of the computing architectures."
-- Christophe Calvin, CEA, Fundamental Research Division, Saclay, France

"Three editors, one from each of the High Performance Computer Centers at Lawrence Berkeley, Argonne, and Oak Ridge National Laboratories, have compiled a very useful set of chapters aimed at describing software developments for the next generation exa-scale computers. Such a book is needed for scientists and engineers to see where the field is going and how they will be able to exploit such architectures for their own work. The book will also benefit students as it provides insights into how to develop software for such computer architectures. Overall, this book fills an important need in showing how to design and implement algorithms for exa-scale architectures which are heterogeneous and have unique memory systems. The book discusses issues with developing user codes for these architectures and how to address these issues including actual coding examples.'
-- Dr. David A. Dixon, Robert Ramsay Chair, The University of Alabama, Tuscaloosa, Alabama, USA


Chapter 1 Portable Methodologies for Energy Optimization on Large-Scale Power-Constrained Systems Kevin J. Barker and Darren J. Kerbyson
Chapter 2 Performance Analysis and Debugging Tools at Scale Scott Parker, John Mellor-Crummey, Dong H. Ahn, Heike Jagode, Holger Brunst, Sameer Shende, Allen D. Malony, David Lecomber, John V. DelSignore, Jr., Ronny Tschüter, Ralph Castain, Kevin Harms, Philip Carns, Ray Loy, and Kalyan Kumaran
Chapter 3 Exascale Challenges in Numerical Linear and Multilinear Algebras Dmitry I. Lyakh and Wayne Joubert
Chapter 4 Exposing Hierarchical Parallelism in the FLASH Code for Supernova Simulation on Summit and Other Architectures Thomas Papatheodore and O. E. Bronson Messer
Chapter 5 NAMD: Scalable Molecular Dynamics Based on the Charm++ Parallel Runtime System Bilge Acun, Ronak Buch, Laxmikant Kale, and James C. Phillips
Chapter 6 Developments in Computer Architecture and the Birth and Growth of Computational Chemistry Wim Nieuwpoort and Ria Broer
Chapter 7 On Preparing the Super Instruction Architecture and Aces4 for Future Computer Systems Jason Byrd, Rodney Bartlett, and Beverly A. Sanders
Chapter 8 Transitioning NWChem to the Next Generation of Manycore Machines Eric J. Bylaska, Edoardo Aprà, Karol Kowalski, Mathias Jacquelin, Wibe A. de Jong, Abhinav Vishnu, Bruce Palmer, Jeff Daily, Tjerk P. Straatsma, Jeff R. Hammond, and Michael Klemm
Chapter 9 Exascale Programming Approaches for Accelerated Climate Modeling for Energy Matthew R. Norman, Azamat Mametjanov, and Mark Taylor
Chapter 10 Preparing the Community Earth System Model for Exascale Computing John M. Dennis, Christopher Kerr, Allison H. Baker, Brian Dobbins, Kevin Paul, Richard Mills, Sheri Mickelson, Youngsung Kim, and Raghu Kumar
Chapter 11 Large Eddy Simulation of Reacting Flow Physics and Combustion Joseph C. Oefelein and Ramanan Sankaran
Chapter 12 S3D-Legion: An Exascale Software for Direct Numerical Simulation of Turbulent Combustion with Complex Multicomponent Chemistry Sean Treichler, Michael Bauer, Ankit Bhagatwala, Giulio Borghesi, Ramanan Sankaran, Hemanth Kolla, Patrick S. McCormick, Elliott Slaughter, Wonchan Lee, Alex Aiken, and Jacqueline Chen
Chapter 13 Data and Work_ow Management for Exascale Global Adjoint Tomography Matthieu Lefebvre, Yangkang Chen, Wenjie Lei, David Luet, Youyi Ruan, Ebru Bozdag, Judith Hill, Dimitri Komatitsch, Lion Krischer, Daniel Peter, Norbert Podhorszki, James Smith, and Jeroen Tromp
Chapter 14 Scalable Structured Adaptive Mesh Refinement with Complex Geometry Brian Van Straalen, David Trebotich, Andrey Ovsyannikov, and Daniel T. Graves
Chapter 15 Extreme Scale Unstructured Adaptive CFD for Aerodynamic Flow Control Kenneth E. Jansen, Michel Rasquin, Jed Brown, Cameron Smith, Mark S. Shephard, and Chris Carothers
Chapter 16 Lattice Quantum Chromodynamics and Chroma Bálint Joó, Robert G. Edwards, and Frank T. Winter
Chapter 17 PIC Codes on the Road to Exascale Architectures Henri Vincenti, Mathieu Lobet, Remi Lehe, Jean-Luc Vay, and Jack Deslippe
Chapter 18 Extreme-Scale De Novo Genome Assembly Evangelos Georganas, Steven Hofmeyr, Leonid Oliker, Rob Egan, Daniel Rokhsar, Aydin Buluc, and Katherine Yelick
Chapter 19 Exascale Scientific Applications: Programming Approaches for Scalability, Performance, and Portability: KKRnano Paul F. Baumeister, Marcel Bornemann, Dirk Pleiter, and Rudolf Zeller
Chapter 20 Real-Space Multiple-Scattering Theory and Its Applications at Exascale Markus Eisenbach and Yang Wang
Chapter 21 Development of QMCPACK for Exascale Scientific Computing Anouar Benali, David M. Ceperley, Ed D''Azevedo, Mark Dewing, Paul R. C. Kent, Jeongnim Kim, Jaron T. Krogel, Ying Wai Li, Ye Luo, Tyler McDaniel, Miguel A. Morales, Amrita Mathuria, Luke Shulenburger, and Norm M. Tubman
Chapter 22 Preparing an Excited-State Materials Application for Exascale Jack Deslippe, Felipe H. da Jornada, Derek Vigil-Fowler, Taylor Barnes, Thorsten Kurth, and Steven G. Louie
Chapter 23 Global Gyrokinetic Particle-in-Cell Simulation William Tang and Zhihong Lin
Chapter 24 The Fusion Code XGC: Enabling Kinetic Study of Multiscale Edge Turbulent Transport in ITER Eduardo D''Azevedo, Stephen Abbott, Tuomas Koskela, Patrick Worley, Seung-Hoe Ku, Stephane Ethier, Eisung Yoon, Mark Shephard, Robert Hager, Jianying Lang, Jong Choi, Norbert Podhorszki, Scott Klasky, Manish Parashar, and Choong-Seock Chang
De oplyste priser er inkl. moms

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.